Hamostaseologie 2023; 43(05): 360-373
DOI: 10.1055/a-2118-1431
Review Article

The Use of Large Animal Models in Trauma and Bleeding Studies

Farahnaz Rayatdoost
1   Department of Anaesthesiology, University Hospital RWTH Aachen, Aachen, Germany
,
Oliver Grottke
1   Department of Anaesthesiology, University Hospital RWTH Aachen, Aachen, Germany
› Author Affiliations

Abstract

Background Major trauma often results in significant bleeding and coagulopathy, posing a substantial clinical burden. To understand the underlying pathophysiology and to refine clinical strategies to overcome coagulopathy, preclinical large animal models are often used. This review scrutinizes the clinical relevance of large animal models in hemostasis research, emphasizing challenges in translating findings into clinical therapies.

Methods We conducted a thorough search of PubMed and EMBASE databases from January 1, 2010, to December 31, 2022. We used specific keywords and inclusion/exclusion criteria centered on large animal models.

Results Our review analyzed 84 pertinent articles, including four animal species: pigs, sheep, dogs, and nonhuman primates (NHPs). Eighty-five percent of the studies predominantly utilized porcine models. Meanwhile, sheep and dogs were less represented, making up only 2.5% of the total studies. Models with NHP were 10%. The most frequently used trauma models involved a combination of liver injury and femur fractures (eight studies), arterial hemorrhage (seven studies), and a combination of hemodilution and liver injury (seven studies). A wide array of coagulation parameters were employed to assess the efficacy of interventions in hemostasis and bleeding control.

Conclusions Recognizing the diverse strengths and weaknesses of large animal models is critical for trauma and hemorrhage research. Each model is unique and should be chosen based on how well it aligns with the specific scientific objectives of the study. By strategically considering each model's advantages and limitations, we can enhance our understanding of trauma and hemorrhage pathophysiology and further advance the development of effective treatments.



Publication History

Received: 31 May 2023

Accepted: 04 July 2023

Article published online:
11 September 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma 2006; 60 (06) S3-S11
  • 2 Savioli G, Ceresa IF, Caneva L, Gerosa S, Ricevuti G. Trauma-induced coagulopathy: overview of an emerging medical problem from pathophysiology to outcomes. Medicines (Basel) 2021; 8 (04) 16
  • 3 Zentai C, van der Meijden PE, Braunschweig T. et al. Hemostatic therapy using tranexamic acid and coagulation factor concentrates in a model of traumatic liver injury. Anesth Analg 2016; 123 (01) 38-48
  • 4 Dickneite G, Dörr B, Kaspereit F, Tanaka KA. Prothrombin complex concentrate versus recombinant factor VIIa for reversal of hemodilutional coagulopathy in a porcine trauma model. J Trauma 2010; 68 (05) 1151-1157
  • 5 Honickel M, Rieg A, Rossaint R. et al. Prothrombin complex concentrate reduces blood loss and enhances thrombin generation in a pig model with blunt liver injury under severe hypothermia. Thromb Haemost 2011; 106 (04) 724-733
  • 6 Spronk HM, Braunschweig T, Rossaint R. et al. Recombinant factor VIIa reduces bleeding after blunt liver injury in a pig model of dilutional coagulopathy under severe hypothermia. PLoS One 2015; 10 (06) e0113979
  • 7 Honickel M, Braunschweig T, van Ryn J. et al. Prothrombin complex concentrate is effective in treating the anticoagulant effects of dabigatran in a porcine polytrauma model. Anesthesiology 2015; 123 (06) 1350-1361
  • 8 Zentai C, Solomon C, van der Meijden PE. et al. Effects of fibrinogen concentrate on thrombin generation, thromboelastometry parameters, and laboratory coagulation testing in a 24-hour porcine trauma model. Clin Appl Thromb Hemost 2016; 22 (08) 749-759
  • 9 Honickel M, Spronk HM, Rossaint R. et al. Dose requirements for idarucizumab reversal of dabigatran in a lethal porcine trauma model with continuous bleeding. Thromb Haemost 2017; 117 (07) 1370-1378
  • 10 Hansson KM, Pehrsson S, Johansson KJ, Lindblom A, Nelander K, Lövgren A. Recombinant human prothrombin (MEDI8111) combined with fibrinogen dose-dependently improved survival time and reduced blood loss in a porcine model of dilutional coagulopathy with uncontrolled bleeding. Blood Coagul Fibrinolysis 2019; 30 (04) 140-148
  • 11 Honickel M, Braunschweig T, Rossaint R, Stoppe C, Ten Cate H, Grottke O. Reversing dabigatran anticoagulation with prothrombin complex concentrate versus idarucizumab as part of multimodal hemostatic intervention in an animal model of polytrauma. Anesthesiology 2017; 127 (05) 852-861
  • 12 Akman N, Braunschweig T, Honickel M. et al. Reversal of dabigatran by intraosseous or intravenous idarucizumab in a porcine polytrauma model. Br J Anaesth 2018; 120 (05) 978-987
  • 13 Honickel M, Braunschweig T, Rossaint R, Schöchl H, Grottke O. Evaluation of combined idarucizumab and prothrombin complex concentrate treatment for bleeding related to dabigatran in a lethal porcine model of double trauma. Transfusion 2019; 59 (04) 1376-1387
  • 14 Grottke O, Braunschweig T, Rossaint R. et al. Transient or extended reversal of apixaban anticoagulation by andexanet alfa is equally effective in a porcine polytrauma model. Br J Anaesth 2019; 123 (02) 186-195
  • 15 Grottke O, Honickel M, Braunschweig T, Reichel A, Schöchl H, Rossaint R. Prothrombin complex concentrate-induced disseminated intravascular coagulation can be prevented by coadministering antithrombin in a porcine trauma model. Anesthesiology 2019; 131 (03) 543-554
  • 16 Rayatdoost F, Braunschweig T, Maron B. et al. Reversing rivaroxaban anticoagulation as part of a multimodal hemostatic intervention in a polytrauma animal model. Anesthesiology 2021; 135 (04) 673-685
  • 17 Mohr J, Ruchholtz S, Hildebrand F. et al. Induced hypothermia does not impair coagulation system in a swine multiple trauma model. J Trauma Acute Care Surg 2013; 74 (04) 1014-1020
  • 18 Sillesen M, Johansson PI, Rasmussen LS. et al. Platelet activation and dysfunction in a large-animal model of traumatic brain injury and hemorrhage. J Trauma Acute Care Surg 2013; 74 (05) 1252-1259
  • 19 Sillesen M, Johansson PI, Rasmussen LS. et al. Fresh frozen plasma resuscitation attenuates platelet dysfunction compared with normal saline in a large animal model of multisystem trauma. J Trauma Acute Care Surg 2014; 76 (04) 998-1007
  • 20 Sheppard FR, Mitchell TA, Cap AP, Schaub LJ, Macko AR, Glaser JJ. Prehospital whole blood resuscitation prevents coagulopathy and improves acid-base status at hospital arrival in a nonhuman primate hemorrhagic shock model. Transfusion 2019; 59 (07) 2238-2247
  • 21 Sheppard FR, Schaub LJ, Cap AP. et al. Whole blood mitigates the acute coagulopathy of trauma and avoids the coagulopathy of crystalloid resuscitation. J Trauma Acute Care Surg 2018; 85 (06) 1055-1062
  • 22 Schaub LJ, Moore HB, Cap AP, Glaser JJ, Moore EE, Sheppard FR. Nonhuman primate model of polytraumatic hemorrhagic shock recapitulates early platelet dysfunction observed following severe injury in humans. J Trauma Acute Care Surg 2017; 82 (03) 461-469
  • 23 van Zyl N, Milford EM, Diab S. et al. Activation of the protein C pathway and endothelial glycocalyx shedding is associated with coagulopathy in an ovine model of trauma and hemorrhage. J Trauma Acute Care Surg 2016; 81 (04) 674-684
  • 24 Brännström A, von Oelreich E, Degerstedt LE. et al. The swine as a vehicle for research in trauma-induced coagulopathy: introducing principal component analysis for viscoelastic coagulation tests. J Trauma Acute Care Surg 2021; 90 (02) 360-368
  • 25 Honickel M, Maron B, van Ryn J. et al. Therapy with activated prothrombin complex concentrate is effective in reducing dabigatran-associated blood loss in a porcine polytrauma model. Thromb Haemost 2016; 115 (02) 271-284
  • 26 Macko AR, Crossland RF, Cap AP. et al. Control of severe intra-abdominal hemorrhage with an infusible platelet-derived hemostatic agent in a nonhuman primate (rhesus macaque) model. J Trauma Acute Care Surg 2016; 80 (04) 617-624
  • 27 Fülöp A, Turóczi Z, Garbaisz D, Harsányi L, Szijártó A. Experimental models of hemorrhagic shock: a review. Eur Surg Res 2013; 50 (02) 57-70
  • 28 Schreiber MA, Holcomb JB, Hedner U, Brundage SI, Macaitis JM, Hoots K. The effect of recombinant factor VIIa on coagulopathic pigs with grade V liver injuries. J Trauma 2002; 53 (02) 252-257 , discussion 257–259
  • 29 Hildebrand F, Andruszkow H, Huber-Lang M, Pape HC, van Griensven M. Combined hemorrhage/trauma models in pigs-current state and future perspectives. Shock 2013; 40 (04) 247-273
  • 30 Martini WZ, Cortez DS, Dubick MA. Comparisons of normal saline and lactated Ringer's resuscitation on hemodynamics, metabolic responses, and coagulation in pigs after severe hemorrhagic shock. Scand J Trauma Resusc Emerg Med 2013; 21: 86
  • 31 Rall JM, Cox JM, Songer AG, Cestero RF, Ross JD. Comparison of novel hemostatic dressings with QuikClot combat gauze in a standardized swine model of uncontrolled hemorrhage. J Trauma Acute Care Surg 2013; 75 (2, Suppl 2): S150-S156
  • 32 Martini WZ, Xia H, Ryan KL, Bynum J, Cap AP. Valproic acid during hypotensive resuscitation in pigs with trauma and hemorrhagic shock does not improve survival. J Trauma Acute Care Surg 2022; 93 (2S, Suppl 1): S128-S135
  • 33 Spoerke NJ, Van PY, Differding JA. et al. Red blood cells accelerate the onset of clot formation in polytrauma and hemorrhagic shock. J Trauma 2010; 69 (05) 1054-1059 , discussion 1059–1061
  • 34 Kheirabadi BS, Terrazas IB, Williams JF, Hanson MA, Dubick MA, Blackbourne LH. Negative-pressure wound therapy: a hemostatic adjunct for control of coagulopathic hemorrhage in large soft tissue wounds. J Trauma Acute Care Surg 2012; 73 (05) 1188-1194
  • 35 Lee TH, Van PY, Spoerke NJ. et al. The use of lyophilized plasma in a severe multi-injury pig model. Transfusion 2013; 53 (Suppl. 01) 72S-79S
  • 36 Lee TH, Watson K, Fabricant L. et al. Hyperosmolar reconstituted lyophilized plasma is an effective low-volume hemostatic resuscitation fluid for trauma. J Trauma Acute Care Surg 2013; 75 (03) 369-375
  • 37 Reynolds PS, Fisher BJ, McCarter J. et al. Interventional vitamin C: a strategy for attenuation of coagulopathy and inflammation in a swine multiple injuries model. J Trauma Acute Care Surg 2018; 85 (1S, Suppl 2): S57-S67
  • 38 Cudjoe Jr EK, Hassan ZH, Kang L. et al. Temporal map of the pig polytrauma plasma proteome with fluid resuscitation and intravenous vitamin C treatment. J Thromb Haemost 2019; 17 (11) 1827-1837
  • 39 Kauvar DS, Schechtman DW, Thomas SB. et al. Endovascular embolization techniques in a novel swine model of fatal uncontrolled solid organ hemorrhage and coagulopathy. Ann Vasc Surg 2021; 70: 143-151
  • 40 Zentai C, Braunschweig T, Rossaint R. et al. Fibrin patch in a pig model with blunt liver injury under severe hypothermia. J Surg Res 2014; 187 (02) 616-624
  • 41 Grottke O, Braunschweig T, Philippen B. et al. A new model for blunt liver injuries in the swine. Eur Surg Res 2010; 44 (02) 65-73
  • 42 Grottke O, Braunschweig T, Henzler D, Coburn M, Tolba R, Rossaint R. Effects of different fibrinogen concentrations on blood loss and coagulation parameters in a pig model of coagulopathy with blunt liver injury. Crit Care 2010; 14 (02) R62
  • 43 Schlimp CJ, Solomon C, Keibl C. et al. Recovery of fibrinogen concentrate after intraosseous application is equivalent to the intravenous route in a porcine model of hemodilution. J Trauma Acute Care Surg 2014; 76 (05) 1235-1242
  • 44 Scribner DM, Witowski NE, Mulier KE, Lusczek ER, Wasiluk KR, Beilman GJ. Liver metabolomic changes identify biochemical pathways in hemorrhagic shock. J Surg Res 2010; 164 (01) e131-e139
  • 45 Hildebrand F, Weuster M, Mommsen P. et al. A combined trauma model of chest and abdominal trauma with hemorrhagic shock – description of a new porcine model. Shock 2012; 38 (06) 664-670
  • 46 Frankel DA, Acosta JA, Anjaria DJ. et al. Physiologic response to hemorrhagic shock depends on rate and means of hemorrhage. J Surg Res 2007; 143 (02) 276-280
  • 47 Muir SL, Sheppard LB, Maika-Wilson A. et al. A comparison of the effects of intraosseous and intravenous 5% albumin on infusion time and hemodynamic measures in a swine model of hemorrhagic shock. Prehosp Disaster Med 2016; 31 (04) 436-442
  • 48 Martini WZ, Cortez DS, Dubick MA, Blackbourne LH. Different recovery profiles of coagulation factors, thrombin generation, and coagulation function after hemorrhagic shock in pigs. J Trauma Acute Care Surg 2012; 73 (03) 640-647
  • 49 Ponschab M, Schöchl H, Keibl C, Fischer H, Redl H, Schlimp CJ. Preferential effects of low volume versus high volume replacement with crystalloid fluid in a hemorrhagic shock model in pigs. BMC Anesthesiol 2015; 15: 133
  • 50 Burns JW, Baer LA, Darlington DN, Dubick MA, Wade CE. Screening of potential small volume resuscitation products using a severe hemorrhage sedated swine model. Int J Burns Trauma 2012; 2 (01) 59-67
  • 51 van Griensven M, Ricklin D, Denk S. et al. Protective effects of the complement inhibitor Compstatin CP40 in hemorrhagic shock. Shock 2019; 51 (01) 78-87
  • 52 Burgert J, Gegel B, Neal AR. et al. The effects of arterial blood pressure on rebleeding when BleedArrest, Celox and TraumaDex are used in a porcine model of lethal femoral injury. Mil Med 2012; 177 (03) 340-344
  • 53 Adamiak Z, Krystkiewicz W, Pomianowski A. et al. The effect of hemostatic dressing prototypes for the uniformed services on selected blood coagulation parameters in pigs. Acta Vet Scand 2017; 59 (01) 29
  • 54 White NJ, Mehic E, Wang X. et al. Rediscovering the wound hematoma as a site of hemostasis during major arterial hemorrhage. J Thromb Haemost 2015; 13 (12) 2202-2209
  • 55 Mueller GR, Pineda TJ, Xie HX. et al. A novel sponge-based wound stasis dressing to treat lethal noncompressible hemorrhage. J Trauma Acute Care Surg 2012; 73 (2, Suppl 1): S134-S139
  • 56 Schlimp CJ, Khadem A, Klotz A. et al. Rapid measurement of fibrinogen concentration in whole blood using a steel ball coagulometer. J Trauma Acute Care Surg 2015; 78 (04) 830-836
  • 57 R Baylis J, Finkelstein-Kulka A, Macias-Valle L. et al. Rapid hemostasis in a sheep model using particles that propel thrombin and tranexamic acid. Laryngoscope 2017; 127 (04) 787-793
  • 58 Wang J, Zhang H, Wang J. et al. Efficacy of new zeolite-based hemostatic gauze in a gunshot model of junctional femoral artery hemorrhage in swine. J Surg Res 2021; 263: 176-185
  • 59 Moochhala S, Wu J, Lu J. Hemorrhagic shock: an overview of animal models. Front Biosci 2009; 14 (12) 4631-4639
  • 60 Grottke O, Braunschweig T, Daheim N. et al. Effect of TachoSil in a coagulopathic pig model with blunt liver injuries. J Surg Res 2011; 171 (01) 234-239
  • 61 Duggan M, Rago A, Sharma U. et al. Self-expanding polyurethane polymer improves survival in a model of noncompressible massive abdominal hemorrhage. J Trauma Acute Care Surg 2013; 74 (06) 1462-1467
  • 62 Cau MF, Ali-Mohamad N, Baylis JR. et al. Percutaneous delivery of self-propelling hemostatic powder for managing non-compressible abdominal hemorrhage: a proof-of-concept study in swine. Injury 2022; 53 (05) 1603-1609
  • 63 Honickel M, Treutler S, van Ryn J, Tillmann S, Rossaint R, Grottke O. Reversal of dabigatran anticoagulation ex vivo: porcine study comparing prothrombin complex concentrates and idarucizumab. Thromb Haemost 2015; 113 (04) 728-740
  • 64 Saviano A, Ojetti V, Zanza C. et al. Liver trauma: management in the emergency setting and medico-legal implications. Diagnostics (Basel) 2022; 12 (06) 1456
  • 65 Rezende-Neto J, Doshi S, Gomez D, Camilotti B, Marcuzzi D, Beckett A. A novel inflatable device for perihepatic packing and hepatic hemorrhage control: a proof-of-concept study. Injury 2022; 53 (01) 103-111
  • 66 Sheppard FR, Macko A, Fryer DM. et al. Development of a Nonhuman Primate (Rhesus Macaque) Model of Uncontrolled Traumatic Liver Hemorrhage. Shock 2015; Aug; 44 (Suppl. 01) 114-122 .Erratum in: Shock 2016 Mar;45(3):333. Dosage error in article text. PMID: 25692254
  • 67 Sondeen JL, Hanson MA, Prince MD. et al. Double-blinded, placebo-controlled study of early tranexamic acid treatment in swine uncontrolled hemorrhage model. J Trauma Acute Care Surg 2016; 80 (01) 81-88
  • 68 Zhang G, Sun Y, Yu J. et al. Microwave coagulation therapy and drug injection to treat splenic injury. J Surg Res 2014; 186 (01) 226-233
  • 69 Roy P, Mukherjee R, Parik M. Splenic trauma in the twenty-first century: changing trends in management. Ann R Coll Surg Engl 2018; 100 (08) 1-7
  • 70 Sheppard FR, Macko AR, Glaser JJ. et al. Nonhuman primate (rhesus macaque) models of severe pressure-targeted hemorrhagic and polytraumatic hemorrhagic shock. Shock 2018; 49 (02) 174-186
  • 71 Sheppard FR, Mitchell TA, Macko AR. et al. Whole blood and Hextend: bookends of modern tactical combat casualty care field resuscitation and starting point for multifunctional resuscitation fluid development. J Trauma Acute Care Surg 2018; 85 (1S, Suppl 2): S33-S38
  • 72 Macko AR, Moore HB, Cap AP, Meledeo MA, Moore EE, Sheppard FR. Tissue injury suppresses fibrinolysis after hemorrhagic shock in nonhuman primates (rhesus macaque). J Trauma Acute Care Surg 2017; 82 (04) 750-757
  • 73 Mayer AR, Dodd AB, Vermillion MS. et al. A systematic review of large animal models of combined traumatic brain injury and hemorrhagic shock. Neurosci Biobehav Rev 2019; 104: 160-177
  • 74 Sillesen M, Rasmussen LS, Jin G. et al. Assessment of coagulopathy, endothelial injury, and inflammation after traumatic brain injury and hemorrhage in a porcine model. J Trauma Acute Care Surg 2014; 76 (01) 12-19 , discussion 19–20
  • 75 Dekker SE, Sillesen M, Bambakidis T. et al. Normal saline influences coagulation and endothelial function after traumatic brain injury and hemorrhagic shock in pigs. Surgery 2014; 156 (03) 556-563
  • 76 Cralley AL, Moore EE, Kissau D. et al. A combat casualty relevant dismounted complex blast injury model in swine. J Trauma Acute Care Surg 2022; 93 (2S, Suppl 1): S110-S118
  • 77 Vrettos T, Poimenidi E, Athanasopoulos P. et al. The effect of permissive hypotension in combined traumatic brain injury and blunt abdominal trauma: an experimental study in swines. Eur Rev Med Pharmacol Sci 2016; 20 (04) 620-630
  • 78 Mayer AR, Dodd AB, Ling JM. et al. Survival rates and biomarkers in a large animal model of traumatic brain injury combined with two different levels of blood loss. Shock 2021; 55 (04) 554-562
  • 79 Dekker SE, Sillesen M, Bambakidis T. et al. Treatment with a histone deacetylase inhibitor, valproic acid, is associated with increased platelet activation in a large animal model of traumatic brain injury and hemorrhagic shock. J Surg Res 2014; 190 (01) 312-318
  • 80 Teranishi K, Scultetus A, Haque A. et al. Traumatic brain injury and severe uncontrolled haemorrhage with short delay pre-hospital resuscitation in a swine model. Injury 2012; 43 (05) 585-593
  • 81 Hagemo JS, Jørgensen JJ, Ostrowski SR. et al. Changes in fibrinogen availability and utilization in an animal model of traumatic coagulopathy. Scand J Trauma Resusc Emerg Med 2013; 21: 56
  • 82 White NJ, Martin EJ, Shin Y, Brophy DF, Diegelmann RF, Ward KR. Systemic central venous oxygen saturation is associated with clot strength during traumatic hemorrhagic shock: a preclinical observational model. Scand J Trauma Resusc Emerg Med 2010; 18: 64
  • 83 White NJ, Martin EJ, Brophy DF, Ward KR. Coagulopathy and traumatic shock: characterizing hemostatic function during the critical period prior to fluid resuscitation. Resuscitation 2010; 81 (01) 111-116
  • 84 Watts S, Nordmann G, Brohi K. et al. Evaluation of prehospital blood products to attenuate acute coagulopathy of trauma in a model of severe injury and shock in anesthetized pigs. Shock 2015; 44 (Suppl 1, Suppl 1): 138-148
  • 85 Martini WZ, Rodriguez CM, Cap AP, Dubick MA. Efficacy of resuscitation with fibrinogen concentrate and platelets in traumatic hemorrhage swine model. J Trauma Acute Care Surg 2020; 89 (2S, Suppl 2): S137-S145
  • 86 Martini WZ, Xia H, Terrazas I, Dubick MA. Autoresuscitation of Poloxamer 188 in pigs with traumatic severe hemorrhage. Shock 2022; 57 (04) 583-589
  • 87 Martini WZ, Dubick MA, Blackbourne LH. Comparisons of lactated Ringer's and Hextend resuscitation on hemodynamics and coagulation following femur injury and severe hemorrhage in pigs. J Trauma Acute Care Surg 2013; 74 (03) 732-739 , discussion 739–740
  • 88 Martini WZ, Dubick MA. Fibrinogen concentrate administration inhibits endogenous fibrinogen synthesis in pigs after traumatic hemorrhage. J Trauma Acute Care Surg 2015; 79 (04) 540-547 , discussion 547–548
  • 89 Schechtman DW, Kauvar DS, De Guzman R. et al. Differing resuscitation with aortic occlusion in a swine junctional hemorrhage polytrauma model. J Surg Res 2020; 248: 90-97
  • 90 Veith NT, Histing T, Menger MD, Pohlemann T, Tschernig T. Helping prometheus: liver protection in acute hemorrhagic shock. Ann Transl Med 2017; 5 (10) 206
  • 91 Doran CM, Doran CA, Woolley T. et al. Targeted resuscitation improves coagulation and outcome. J Trauma Acute Care Surg 2012; 72 (04) 835-843
  • 92 Dixon A, Beiling M, Smith S. et al. FFP maintains normal coagulation while Kcentra induces a hypercoagulable state in a porcine model of pulmonary contusion and hemorrhagic shock. J Trauma Acute Care Surg 2022; 93 (01) 124-129
  • 93 Mulier KE, Greenberg JG, Beilman GJ. Hypercoagulability in porcine hemorrhagic shock is present early after trauma and resuscitation. J Surg Res 2012; 174 (01) e31-e35
  • 94 Majde JA. Animal models for hemorrhage and resuscitation research. J Trauma 2003; 54 (05) S100-S105
  • 95 Tarandovskiy ID, Shin HKH, Baek JH, Karnaukhova E, Buehler PW. Interspecies comparison of simultaneous thrombin and plasmin generation. Sci Rep 2020; 10 (01) 3885
  • 96 Foley SR, Solano C, Simonova G. et al. A comprehensive study of ovine haemostasis to assess suitability to model human coagulation. Thromb Res 2014; 134 (02) 468-473
  • 97 Siller-Matula JM, Plasenzotti R, Spiel A, Quehenberger P, Jilma B. Interspecies differences in coagulation profile. Thromb Haemost 2008; 100 (03) 397-404
  • 98 Lechner R, Helm M, Müller M, Wille T, Riesner HJ, Friemert B. In-vitro study of species-specific coagulation differences in animals and humans using rotational thromboelastometry (ROTEM). J R Army Med Corps 2019; 165 (05) 356-359
  • 99 Kessler U, Grau T, Gronchi F. et al. Comparison of porcine and human coagulation by thrombelastometry. Thromb Res 2011; 128 (05) 477-482
  • 100 Velik-Salchner C, Schnürer C, Fries D. et al. Normal values for thrombelastography (ROTEM) and selected coagulation parameters in porcine blood. Thromb Res 2006; 117 (05) 597-602
  • 101 Flight SM, Masci PP, Lavin MF, Gaffney PJ. Resistance of porcine blood clots to lysis relates to poor activation of porcine plasminogen by tissue plasminogen activator. Blood Coagul Fibrinolysis 2006; 17 (05) 417-420
  • 102 Swearengen JR. Choosing the right animal model for infectious disease research. Animal Model Exp Med 2018; 1 (02) 100-108
  • 103 Kuckelman J, Barron M, Moe D. et al. Plasma coadministration improves resuscitation with tranexamic acid or prothrombin complex in a porcine hemorrhagic shock model. J Trauma Acute Care Surg 2018; 85 (01) 91-100
  • 104 Hatch Q, Debarros M, Eckert M. et al. Acute coagulopathy in a porcine venous hemorrhage and ischemia reperfusion model. Am J Surg 2014; 207 (05) 637-641 , discussion 641
  • 105 Duan K, Yu W, Lin Z. et al. A time course study of acute traumatic coagulopathy prior to resuscitation: from hypercoagulation to hypocoagulation caused by hypoperfusion?. Transfus Apheresis Sci 2014; 50 (03) 399-406
  • 106 Huang Y, Fan C, Liu Y. et al. Nature-derived okra gel as strong hemostatic bioadhesive in human blood, liver, and heart trauma of rabbits and dogs. Adv Healthc Mater 2022; 11 (18) e2200939
  • 107 Hemker HC, Giesen P, Al Dieri R, Regnault V, de Smedt E, Wagenvoord R, Lecompte T, Béguin S. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb 2003; 33 (01) 4-15 . PMID: 12853707