CC BY 4.0 · Synthesis 2023; 55(23): 3906-3918
DOI: 10.1055/a-2118-3046
short review

Activation of Diazo Compounds by Fluorinated Triarylborane Catalysts

Milan Pramanik
,
Rebecca L. Melen
The authors would like to thank the Engineering and Physical Sciences Research Council (EPSRC) for funding (EP/R026912/1).


Abstract

The diverse applicability of diazo compounds as versatile reagents has enlarged the chemical toolbox in organic synthesis. Over the past few decades, transition-metal-catalyzed diazo compound activation has ignited the classical synthetic methodology via utilizing highly reactive metal carbenoid species. Many reviews have also appeared in the literature that show the advantages and disadvantages of metal-catalyzed activation of diazo compounds. Recently, tris(pentafluorophenyl)borane-mediated diazo activation reactions has remodeled this research area due to the potential for mild, environmentally friendly, metal-free, nontoxic reaction conditions, and the diverse reactivity patterns of boranes towards diazo compounds. In this review, we discuss the reactivity of the boron–diazo precursor adducts with compounds using catalytic and stoichiometric halogenated triarylboranes and, the mechanism of N2 release from the diazo reagent. This generates the reactive carbene species as a key intermediate which can further be exploited for O–H, N–H, S–H, and C–H insertions, azide insertion, carbonate transfer, C–C and C=C bond forming reactions, [2+2] or [2+4] cascade cyclization reactions, annulation reactions, etc.

1 Introduction

2 Diazo Activation Using Stoichiometric Boranes

3 Diazo Activation Using Catalytic B(C6F5)3

4 B(C6F5)3-Catalyzed Diazo Activation Reactions

5 Conclusions



Publication History

Received: 31 May 2023

Accepted after revision: 26 June 2023

Accepted Manuscript online:
27 June 2023

Article published online:
26 July 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Xiang Y, Wang C, Ding Q, Peng Y. Adv. Synth. Catal. 2019; 361: 919
  • 2 Liu S.-T, Reddy KR. Chem. Soc. Rev. 1999; 28: 315
  • 3 Doyle MP. Chem. Rev. 1986; 86: 919
  • 4 Davies HM. L, Manning JR. Nature 2008; 451: 417
  • 5 Gessner VH. Chem. Commun. 2016; 52: 12011
  • 6 Santiago JV, Machado AH. L. Beilstein J. Org. Chem. 2016; 12: 882
  • 7 Patrick EA, Piers WE. Chem. Commun. 2020; 56: 841
  • 8 Dasgupta A, Richards E, Melen RL. ACS Catal. 2022; 12: 442
  • 9 Carden JL, Dasgupta A, Melen RL. Chem. Soc. Rev. 2020; 49: 1706
  • 10 San HH, Wang S.-J, Jiang M, Tang X.-Y. Org. Lett. 2018; 20: 4672
  • 11 He F, Koenigs RM. Org. Lett. 2021; 23: 5831
  • 12 Zhao Y, Mandal D, Guo J, Wu Y, Stephan DW. Chem. Commun. 2021; 57: 7758
  • 13 Wang P, Gong Y, Wang X, Ren Y, Wang L, Zhai L, Li H, She X. Chem. Asian J. 2022; 17: e202200465
  • 14 Dasgupta A, Babaahmadi R, Slater B, Yates BF, Ariafard A, Melen RL. Chem 2020; 6: 2364
  • 15 Yu Z, Li Y, Shi J, Ma B, Liu L, Zhang J. Angew. Chem. Int. Ed. 2016; 55: 14807
  • 16 San HH, Wang C.-Y, Zeng H.-P, Fu S.-T, Jiang M, Tang X.-Y. J. Org. Chem. 2019; 84: 4478
  • 17 Rao S, Ashwathappa PK. S, Prabhu KR. Asian J. Org. Chem. 2019; 8: 320
  • 18 Rao S, Kapanaiah R, Prabhu KR. Adv. Synth. Catal. 2019; 361: 1301
  • 19 Dasgupta A, Stefkova K, Babaahmadi R, Gierlichs L, Ariafard A, Melen RL. Angew. Chem. Int. Ed. 2020; 59: 15492
  • 20 Dasgupta A, Pahar S, Babaahmadi R, Gierlichs L, Yates BF, Ariafard A, Melen RL. Adv. Synth. Catal. 2022; 364: 773
  • 21 Song W, Guo J, Stephan DW. Org. Chem. Front. 2023; 10: 1754
  • 22 Fang J, Brewer M. Org. Lett. 2018; 20: 7384
  • 23 Ito T, Harada S, Homma H, Okabe A, Nemoto T. ACS Catal. 2023; 13: 147
  • 24 Wang F, Nishimoto Y, Yasuda M. J. Am. Chem. Soc. 2021; 143: 20616
  • 25 Venturoni F, Cerra B, Marinozzi M, Camaioni E, Gioiello A, Pellicciari R. Catalysts 2018; 8: 600
  • 26 Tang C, Liang Q, Jupp AR, Johnstone TC, Neu RC, Song D, Grimme S, Stephan DW. Angew. Chem. Int. Ed. 2017; 56: 16588
  • 27 Cao LL, Zhou J, Qu Z.-W, Stephan DW. Angew. Chem. Int. Ed. 2019; 58: 18487
  • 28 Zhu D, Qu Z.-W, Stephan DW. Dalton Trans. 2020; 49: 901
  • 29 Neu RC, Stephan DW. Organometallics 2012; 31: 46
  • 30 Neu RC, Jiang C, Stephan DW. Dalton Trans. 2013; 42: 726
  • 31 Santi M, Ould DM. C, Wenz J, Soltani Y, Melen RL, Wirth T. Angew. Chem. Int. Ed. 2019; 58: 7861
  • 32 Kaehler T, Lorenz J, Ould DM. C, Engl D, Santi M, Gierlichs L, Wirth T, Melen RL. Org. Biomol. Chem. 2022; 20: 4298
  • 33 Ghorai J, Anbarasan P. J. Org. Chem. 2015; 80: 3455
  • 34 Dasgupta A, Babaahmadi R, Pahar S, Stefkova K, Gierlichs L, Yates BF, Ariafard A, Melen RL. Angew. Chem. Int. Ed. 2021; 60: 24395
  • 35 Babaahmadi R, Dasgupta A, Hyland CJ. T, Yates BF, Melen RL, Ariafard A. Chem. Eur. J. 2022; 28: e202104376
  • 36 Zhang Y, Zhang X, Zhao J, Jiang J. Org. Biomol. Chem. 2021; 19: 5772
  • 37 Katritzky AR, Lan X, Yang JZ, Denisko OV. Chem. Rev. 1998; 98: 409
  • 38 Jana S, Empel C, Pei C, Aseeva P, Nguyen TV, Koenigs RM. ACS Catal. 2020; 10: 9925
  • 39 Wu W, Lin Z, Jiang H. Org. Biomol. Chem. 2018; 16: 7315
  • 40 Kamimura A. [2+1]-Type Cyclopropanation Reactions. In Methods and Applications of Cycloaddition Reactions in Organic Syntheses. Nishiwaki N. John Wiley & Sons; Hoboken: 2014: 1-66
  • 41 Mancinelli JP, Wilkerson-Hill SM. ACS Catal. 2020; 10: 11171
  • 42 Stefkova K, Heard MJ, Dasgupta A, Melen RL. Chem. Commun. 2021; 57: 6736
  • 43 Xiao L, Jin L, Zhao Y, Guo J, Stephan DW. Chem. Commun. 2023; 59: 1833
  • 44 Bering L, Manna S, Antonchick AP. Chem. Eur. J. 2017; 23: 10936
  • 45 Stefkova K, Guerzoni MG, van Ingen Y, Richards E, Melen RL. Org. Lett. 2023; 25: 500