Rofo 2024; 196(01): 36-51
DOI: 10.1055/a-2119-5574
Review

Arterial Spin Labeling (ASL) in Neuroradiological Diagnostics – Methodological Overview and Use Cases

Arterial Spin Labeling (ASL) in der neuroradiologischen Diagnostik – Methodischer Überblick und Anwendungsfälle
1   Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
2   Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
3   TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
4   cBrain, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
,
Gabriel Hoffmann
2   Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
3   TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Severin Schramm
2   Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Miriam Reichert
2   Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Moritz Hernandez Petzsche
2   Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Joachim Strobel
5   Department of Nuclear Medicine, University Hospital Ulm, Ulm, Germany
,
Lorenzo Nigris
4   cBrain, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
,
Christopher Kloth
1   Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
,
1   Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
6   Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
,
Corinna Börner
2   Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
7   LMU Hospital, Department of Pediatrics – Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
8   LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
,
Michaela Bonfert
7   LMU Hospital, Department of Pediatrics – Dr. von Hauner Children’s Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
8   LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
,
Maria Berndt
2   Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Georg Grön
9   Department of Psychiatry and Psychotherapy III, University Hospital Ulm, Ulm, Germany
,
Hans-Peter Müller
10   Department of Neurology, University Hospital Ulm, Ulm, Germany
,
Jan Kassubek
10   Department of Neurology, University Hospital Ulm, Ulm, Germany
11   German Center for Neurodegenerative Diseases (DZNE), Ulm University, Ulm, Germany
,
Kornelia Kreiser
1   Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
12   Department of Radiology and Neuroradiology, Universitäts- und Rehabilitationskliniken Ulm, Ulm, Germany
,
Inga K. Koerte
4   cBrain, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
13   Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, United States
14   Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, United States
,
Hans Liebl
2   Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
15   Department of Radiology, Berufsgenossenschaftliche Unfallklinik Murnau, Murnau, Germany
,
Ambros Beer
5   Department of Nuclear Medicine, University Hospital Ulm, Ulm, Germany
16   MoMan – Center for Translational Imaging, University Hospital Ulm, Ulm, Germany
17   i2SouI – Innovative Imaging in Surgical Oncology, University Hospital Ulm, Ulm, Germany
,
Claus Zimmer
2   Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
3   TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Meinrad Beer
1   Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
16   MoMan – Center for Translational Imaging, University Hospital Ulm, Ulm, Germany
17   i2SouI – Innovative Imaging in Surgical Oncology, University Hospital Ulm, Ulm, Germany
,
Stephan Kaczmarz
2   Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
3   TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
18   Market DACH, Philips GmbH, Hamburg, Germany
› Author Affiliations

Abstract

Background Arterial spin labeling (ASL) is a magnetic resonance imaging (MRI)-based technique using labeled blood-water of the brain-feeding arteries as an endogenous tracer to derive information about brain perfusion. It enables the assessment of cerebral blood flow (CBF).

Method This review aims to provide a methodological and technical overview of ASL techniques, and to give examples of clinical use cases for various diseases affecting the central nervous system (CNS). There is a special focus on recent developments including super-selective ASL (ssASL) and time-resolved ASL-based magnetic resonance angiography (MRA) and on diseases commonly not leading to characteristic alterations on conventional structural MRI (e. g., concussion or migraine).

Results ASL-derived CBF may represent a clinically relevant parameter in various pathologies such as cerebrovascular diseases, neoplasms, or neurodegenerative diseases. Furthermore, ASL has also been used to investigate CBF in mild traumatic brain injury or migraine, potentially leading to the establishment of imaging-based biomarkers. Recent advances made possible the acquisition of ssASL by selective labeling of single brain-feeding arteries, enabling spatial perfusion territory mapping dependent on blood flow of a specific preselected artery. Furthermore, ASL-based MRA has been introduced, providing time-resolved delineation of single intracranial vessels.

Conclusion Perfusion imaging by ASL has shown promise in various diseases of the CNS. Given that ASL does not require intravenous administration of a gadolinium-based contrast agent, it may be of particular interest for investigations in pediatric cohorts, patients with impaired kidney function, patients with relevant allergies, or patients that undergo serial MRI for clinical indications such as disease monitoring.

Key Points:

  • ASL is an MRI technique that uses labeled blood-water as an endogenous tracer for brain perfusion imaging.

  • It allows the assessment of CBF without the need for administration of a gadolinium-based contrast agent.

  • CBF quantification by ASL has been used in several pathologies including brain tumors or neurodegenerative diseases.

  • Vessel-selective ASL methods can provide brain perfusion territory mapping in cerebrovascular diseases.

  • ASL may be of particular interest in patient cohorts with caveats concerning gadolinium administration.

Zusammenfassung

Hintergrund Arterial spin labeling (ASL) ist eine Technik der Magnetresonanztomographie (MRT), die eine Markierung des einströmenden Bluts der hirnversorgenden Arterien als endogenen Tracer verwendet, um Informationen über die Hirnperfusion zu generieren. Die Technik ermöglicht eine Untersuchung des zerebralen Blutflusses (CBF).

Methode Diese Übersichtsarbeit möchte einen methodischen und technischen Überblick über die ASL-Techniken vermitteln und Beispiele für klinische Anwendungsfälle anhand von verschiedenen Erkrankungen des zentralen Nervensystems (ZNS) vorstellen. Ein besonderer Fokus liegt dabei auf jüngsten Entwicklungen im Bereich der super-selektiven ASL (ssASL) und zeitaufgelösten ASL-basierten Magnetresonanz-Angiographie (MRA) sowie auf Erkrankungen, die üblicherweise nicht zu charakteristischen Veränderungen gemäß konventioneller struktureller MRT führen (beispielsweise Gehirnerschütterungen oder Migräne).

Ergebnisse Der aus ASL generierte CBF kann einen klinisch relevanten Parameter in Zusammenhang mit verschiedenen Pathologien des ZNS darstellen, wie zum Beispiel bei zerebrovaskulären Erkrankungen, Neoplasien oder neurodegenerativen Erkrankungen. Des Weiteren wurde ASL zur Untersuchung des CBF bei mildem Schädel-Hirn-Trauma oder auch bei Migräne angewendet, so dass potenziell bildbasierte Biomarker etabliert werden könnten. Neuere Entwicklungen ermöglichen zudem die Akquisition von ssASL über eine selektive Markierung einzelner hirnversorgender Arterien, was eine räumlich aufgelöste Kartierung von Perfusionsterritorien basierend auf dem Blutfluss eines spezifischen vorausgewählten Gefäßes zulässt. Daneben wurde auch eine ASL-basierte MRA umgesetzt, die eine zeitaufgelöste Darstellung einzelner intrakranieller Gefäßäste möglich macht.

Schlussfolgerung Perfusionsbildgebung mittels ASL kann insbesondere vielversprechend sein bei Untersuchungen in pädiatrischen Kohorten, bei Patienten mit eingeschränkter Nierenfunktion, Patienten mit relevanten Allergien oder Patienten mit wiederholten MRT-Bildgebungen aufgrund klinischer Indikationen wie beispielsweise zum Krankheitsmonitoring, da die Technik gänzlich ohne Gabe eines Gadolinium-haltigen Kontrastmittels auskommt.

Kernaussagen:

  • ASL ist eine Technik der MRT, welche die Markierung von einströmendem Blut als endogenem Tracer zur Perfusionsbildgebung verwendet.

  • ASL ermöglicht die Untersuchung des CBF ohne die Gabe von Gadolinium-haltigem Kontrastmittel.

  • Quantifizierungen des CBF mittels ASL wurden im Rahmen verschiedener Pathologien einschließlich Hirntumore und neurodegenerative Erkrankungen untersucht.

  • Gefäß-selektive ASL-Methoden ermöglichen Kartierungen der Hirnperfusion bei zerebrovaskulären Erkrankungen.

  • ASL kann insbesondere bei Patienten mit Kontraindikationen für die Gabe von Gadolinium von großer Bedeutung sein.

Zitierweise

  • Sollmann N, Hoffmann G, Schramm S et al. Arterial Spin Labeling (ASL) in Neuroradiological Diagnostics – Methodological Overview and Use Cases. Fortschr Röntgenstr 2024; 196: 36 – 51



Publication History

Received: 07 February 2023

Accepted: 12 June 2023

Article published online:
19 July 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 McGehee BE, Pollock JM, Maldjian JA. Brain perfusion imaging: How does it work and what should I use?. J Magn Reson Imaging 2012; 36: 1257-1272
  • 2 Essig M, Shiroishi MS, Nguyen TB. et al. Perfusion MRI: the five most frequently asked technical questions. Am J Roentgenol 2013; 200: 24-34
  • 3 Essig M, Nguyen TB, Shiroishi MS. et al. Perfusion MRI: the five most frequently asked clinical questions. Am J Roentgenol 2013; 201: W495-W510
  • 4 Zaharchuk G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am J Neuroradiol 2007; 28: 1850-1858
  • 5 Alsop DC, Detre JA, Golay X. et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 2015; 73: 102-116
  • 6 Deibler AR, Pollock JM, Kraft RA. et al. Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am J Neuroradiol 2008; 29: 1228-1234
  • 7 Deibler AR, Pollock JM, Kraft RA. et al. Arterial spin-labeling in routine clinical practice, part 2: hypoperfusion patterns. AJNR Am J Neuroradiol 2008; 29: 1235-1241
  • 8 Deibler AR, Pollock JM, Kraft RA. et al. Arterial spin-labeling in routine clinical practice, part 3: hyperperfusion patterns. AJNR Am J Neuroradiol 2008; 29: 1428-1435
  • 9 Hernandez-Garcia L, Aramendia-Vidaurreta V, Bolar DS. et al. Recent Technical Developments in ASL: A Review of the State of the Art. Magn Reson Med 2022; 88: 2021-2042
  • 10 Detre JA, Leigh JS, Williams DS. et al. Perfusion imaging. Magn Reson Med 1992; 23: 37-45
  • 11 Lindner T, Bolar DS, Achten E. et al. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging. Magn Reson Med 2023;
  • 12 Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995; 34: 293-301
  • 13 Kwong KK, Chesler DA, Weisskoff RM. et al. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 1995; 34: 878-887
  • 14 Borogovac A, Asllani I. Arterial Spin Labeling (ASL) fMRI: advantages, theoretical constrains, and experimental challenges in neurosciences. Int J Biomed Imaging 2012; 2012: 818456
  • 15 Dai W, Garcia D, de Bazelaire C. et al. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008; 60: 1488-1497
  • 16 Garcia DM, De Bazelaire C, Alsop D. Pseudo-continuous flow driven adiabatic inversion for arterial spin labeling. In: Proc Int Soc Magn Reson Med. 2005. 37
  • 17 Buxton RB, Frank LR, Wong EC. et al. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998; 40: 383-396
  • 18 Chen Y, Wang DJ, Detre JA. Comparison of arterial transit times estimated using arterial spin labeling. MAGMA 2012; 25: 135-144
  • 19 Gunther M, Bock M, Schad LR. Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magn Reson Med 2001; 46: 974-984
  • 20 van Osch MJ, Teeuwisse WM, Chen Z. et al. Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow. J Cereb Blood Flow Metab 2018; 38: 1461-1480
  • 21 Günther M. Highly efficient accelerated acquisition of perfusion inflow series by cycled arterial spin labeling. In: Proc Intl Soc Mag Reson Med. 2007: 380
  • 22 von Samson-Himmelstjerna F, Madai VI, Sobesky J. et al. Walsh-ordered hadamard time-encoded pseudocontinuous ASL (WH pCASL). Magn Reson Med 2016; 76: 1814-1824
  • 23 Hendrikse J, van der Grond J, Lu H. et al. Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 2004; 35: 882-887
  • 24 Golay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 2005; 53: 15-21
  • 25 Wong EC. Vessel-encoded arterial spin-labeling using pseudocontinuous tagging. Magn Reson Med 2007; 58: 1086-1091
  • 26 Gevers S, Bokkers RP, Hendrikse J. et al. Robustness and reproducibility of flow territories defined by planning-free vessel-encoded pseudocontinuous arterial spin-labeling. AJNR Am J Neuroradiol 2012; 33: E21-E25
  • 27 Helle M, Rufer S, van Osch MJ. et al. Superselective arterial spin labeling applied for flow territory mapping in various cerebrovascular diseases. J Magn Reson Imaging 2013; 38: 496-503
  • 28 Helle M, Wenzel F, van de Ven K. et al. Advanced Automatic Planning for Super-Selective Arterial Spin Labeling Flow Territory Mapping. In: Proc Int Soc Magn Reson Med. 2018: 302
  • 29 Obara M, Togao O, Beck GM. et al. Non-contrast enhanced 4D intracranial MR angiography based on pseudo-continuous arterial spin labeling with the keyhole and view-sharing technique. Magn Reson Med 2018; 80: 719-725
  • 30 Togao O, Obara M, Helle M. et al. Vessel-selective 4D-MR angiography using super-selective pseudo-continuous arterial spin labeling may be a useful tool for assessing brain AVM hemodynamics. Eur Radiol 2020; 30: 6452-6463
  • 31 Chappell MA, McConnell FAK, Golay X. et al. Partial volume correction in arterial spin labeling perfusion MRI: A method to disentangle anatomy from physiology or an analysis step too far?. Neuroimage 2021; 238: 118236
  • 32 Alsaedi A, Doniselli F, Jager HR. et al. The value of arterial spin labelling in adults glioma grading: systematic review and meta-analysis. Oncotarget 2019; 10: 1589-1601
  • 33 Clement P, Castellaro M, Okell TW. et al. ASL-BIDS, the brain imaging data structure extension for arterial spin labeling. Sci Data 2022; 9: 543
  • 34 Gorgolewski KJ, Auer T, Calhoun VD. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data 2016; 3: 160044
  • 35 Mutsaerts H, Petr J, Groot P. et al. ExploreASL: An image processing pipeline for multi-center ASL perfusion MRI studies. Neuroimage 2020; 219: 117031
  • 36 Adebimpe A, Bertolero M, Dolui S. et al. ASLPrep: a platform for processing of arterial spin labeled MRI and quantification of regional brain perfusion. Nat Methods 2022; 19: 683-686
  • 37 Saini V, Guada L, Yavagal DR. Global Epidemiology of Stroke and Access to Acute Ischemic Stroke Interventions. Neurology 2021; 97: S6-S16
  • 38 Ornello R, Degan D, Tiseo C. et al. Distribution and Temporal Trends From 1993 to 2015 of Ischemic Stroke Subtypes: A Systematic Review and Meta-Analysis. Stroke 2018; 49: 814-819
  • 39 Albers GW, Marks MP, Kemp S. et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N Engl J Med 2018; 378: 708-718
  • 40 Kidwell CS, Jahan R, Gornbein J. et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med 2013; 368: 914-923
  • 41 Ringleb P, Bendszus M, Bluhmki E. et al. Extending the time window for intravenous thrombolysis in acute ischemic stroke using magnetic resonance imaging-based patient selection. Int J Stroke 2019; 14: 483-490
  • 42 Davis SM, Donnan GA, Parsons MW. et al. Effects of alteplase beyond 3h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 2008; 7: 299-309
  • 43 Furlan AJ, Eyding D, Albers GW. et al. Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke 2006; 37: 1227-1231
  • 44 Hacke W, Albers G, Al-Rawi Y. et al. The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 2005; 36: 66-73
  • 45 Nogueira RG, Jadhav AP, Haussen DC. et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N Engl J Med 2018; 378: 11-21
  • 46 Hacke W, Furlan AJ, Al-Rawi Y. et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 2009; 8: 141-150
  • 47 Ma H, Campbell BCV, Parsons MW. et al. Thrombolysis Guided by Perfusion Imaging up to 9 Hours after Onset of Stroke. N Engl J Med 2019; 380: 1795-1803
  • 48 Campbell BC, Mitchell PJ, Kleinig TJ. et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015; 372: 1009-1018
  • 49 Mirasol RV, Bokkers RP, Hernandez DA. et al. Assessing reperfusion with whole-brain arterial spin labeling: a noninvasive alternative to gadolinium. Stroke 2014; 45: 456-461
  • 50 Wang DJ, Alger JR, Qiao JX. et al. The value of arterial spin-labeled perfusion imaging in acute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced MRI. Stroke 2012; 43: 1018-1024
  • 51 Bokkers RP, Hernandez DA, Merino JG. et al. Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke. Stroke 2012; 43: 1290-1294
  • 52 Bivard A, Stanwell P, Levi C. et al. Arterial spin labeling identifies tissue salvage and good clinical recovery after acute ischemic stroke. J Neuroimaging 2013; 23: 391-396
  • 53 Lu SS, Cao YZ, Su CQ. et al. Hyperperfusion on Arterial Spin Labeling MRI Predicts the 90-Day Functional Outcome After Mechanical Thrombectomy in Ischemic Stroke. J Magn Reson Imaging 2021; 53: 1815-1822
  • 54 Yu S, Liebeskind DS, Dua S. et al. Postischemic hyperperfusion on arterial spin labeled perfusion MRI is linked to hemorrhagic transformation in stroke. J Cereb Blood Flow Metab 2015; 35: 630-637
  • 55 Okazaki S, Yamagami H, Yoshimoto T. et al. Cerebral hyperperfusion on arterial spin labeling MRI after reperfusion therapy is related to hemorrhagic transformation. J Cereb Blood Flow Metab 2017; 37: 3087-3090
  • 56 Raman A, Uprety M, Calero MJ. et al. A Systematic Review Comparing Digital Subtraction Angiogram With Magnetic Resonance Angiogram Studies in Demonstrating the Angioarchitecture of Cerebral Arteriovenous Malformations. Cureus 2022; 14: e25803
  • 57 Hernandez Petzsche MR, Reichert M, Hoffmann G. et al. Non-invasive perfusion territory quantification and time-resolved angiography by arterial spin labeling in a patient with a large right-hemispheric AVM: case report. J Neurol 2022; 269: 4539-4545
  • 58 Heit JJ, Thakur NH, Iv M. et al. Arterial-spin labeling MRI identifies residual cerebral arteriovenous malformation following stereotactic radiosurgery treatment. J Neuroradiol 2020; 47: 13-19
  • 59 Rojas-Villabona A, Pizzini FB, Solbach T. et al. Are Dynamic Arterial Spin-Labeling MRA and Time-Resolved Contrast-Enhanced MRA Suited for Confirmation of Obliteration following Gamma Knife Radiosurgery of Brain Arteriovenous Malformations?. AJNR Am J Neuroradiol 2021; 42: 671-678
  • 60 Sollmann N, Liebl H, Preibisch C. et al. Super-selective ASL and 4D ASL-based MR Angiography in a Patient with Moyamoya Disease: Case Report. Clin Neuroradiol 2021; 31: 515-519
  • 61 Yu Z, Bai X, Zhang Y. et al. Baseline Hemodynamic Impairment and Revascularization Outcome in Newly Diagnosed Adult Moyamoya Disease Determined by Pseudocontinuous Arterial Spin Labeling. World Neurosurg 2022; 165: e494-e504
  • 62 Flaherty ML, Kissela B, Khoury JC. et al. Carotid artery stenosis as a cause of stroke. Neuroepidemiology 2013; 40: 36-41
  • 63 Petty GW, Brown Jr. RD, Whisnant JP. et al. Ischemic stroke subtypes: a population-based study of incidence and risk factors. Stroke 1999; 30: 2513-2516
  • 64 Uchino K, Risser JM, Smith MA. et al. Ischemic stroke subtypes among Mexican Americans and non-Hispanic whites: the BASIC Project. Neurology 2004; 63: 574-576
  • 65 Marshall RS, Lazar RM, Liebeskind DS. et al. Carotid revascularization and medical management for asymptomatic carotid stenosis – Hemodynamics (CREST-H): Study design and rationale. Int J Stroke 2018; 13: 985-991
  • 66 Grant EG, Benson CB, Moneta GL. et al. Carotid artery stenosis: gray-scale and Doppler US diagnosis--Society of Radiologists in Ultrasound Consensus Conference. Radiology 2003; 229: 340-346
  • 67 von Reutern GM, Goertler MW, Bornstein NM. et al. Grading carotid stenosis using ultrasonic methods. Stroke 2012; 43: 916-921
  • 68 Liebeskind DS, Cotsonis GA, Saver JL. et al. Collaterals dramatically alter stroke risk in intracranial atherosclerosis. Ann Neurol 2011; 69: 963-974
  • 69 Gottler J, Kaczmarz S, Nuttall R. et al. The stronger one-sided relative hypoperfusion, the more pronounced ipsilateral spatial attentional bias in patients with asymptomatic carotid stenosis. J Cereb Blood Flow Metab 2020; 40: 314-327
  • 70 Kaczmarz S, Gottler J, Petr J. et al. Hemodynamic impairments within individual watershed areas in asymptomatic carotid artery stenosis by multimodal MRI. J Cereb Blood Flow Metab 2021; 41: 380-396
  • 71 Lythgoe DJ, Ostergaard L, William SC. et al. Quantitative perfusion imaging in carotid artery stenosis using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 2000; 18: 1-11
  • 72 Bouvier J, Detante O, Tahon F. et al. Reduced CMRO(2) and cerebrovascular reserve in patients with severe intracranial arterial stenosis: a combined multiparametric qBOLD oxygenation and BOLD fMRI study. Hum Brain Mapp 2015; 36: 695-706
  • 73 Gibbs JM, Wise RJ, Leenders KL. et al. Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet 1984; 1: 310-314
  • 74 Hartkamp NS, Petersen ET, Chappell MA. et al. Relationship between haemodynamic impairment and collateral blood flow in carotid artery disease. J Cereb Blood Flow Metab 2018; 38: 2021-2032
  • 75 van Laar PJ, Hendrikse J, Klijn CJ. et al. Symptomatic carotid artery occlusion: flow territories of major brain-feeding arteries. Radiology 2007; 242: 526-534
  • 76 Petersen ET, Mouridsen K, Golay X. et al. The QUASAR reproducibility study, Part II: Results from a multi-center Arterial Spin Labeling test-retest study. Neuroimage 2010; 49: 104-113
  • 77 Hendrikse J, Petersen ET, van Laar PJ. et al. Cerebral border zones between distal end branches of intracranial arteries: MR imaging. Radiology 2008; 246: 572-580
  • 78 Di Napoli A, Cheng SF, Gregson J. et al. Arterial Spin Labeling MRI in Carotid Stenosis: Arterial Transit Artifacts May Predict Symptoms. Radiology 2020; 297: 652-660
  • 79 Schroder J, Heinze M, Gunther M. et al. Dynamics of brain perfusion and cognitive performance in revascularization of carotid artery stenosis. Neuroimage Clin 2019; 22: 101779
  • 80 Yun TJ, Sohn CH, Han MH. et al. Effect of carotid artery stenting on cerebral blood flow: evaluation of hemodynamic changes using arterial spin labeling. Neuroradiology 2013; 55: 271-281
  • 81 Miller KD, Ostrom QT, Kruchko C. et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin 2021; 71: 381-406
  • 82 Louis DN, Perry A, Wesseling P. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 2021; 23: 1231-1251
  • 83 Stupp R, Brada M, van den Bent MJ. et al. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014; 25 (Suppl. 03) iii93-iii101
  • 84 Sim HW, Morgan ER, Mason WP. Contemporary management of high-grade gliomas. CNS Oncol 2018; 7: 51-65
  • 85 Kassubek R, Muller HP, Thiele A. et al. Advanced magnetic resonance imaging to support clinical drug development for malignant glioma. Drug Discov Today 2021; 26: 429-441
  • 86 van Santwijk L, Kouwenberg V, Meijer F. et al. A systematic review and meta-analysis on the differentiation of glioma grade and mutational status by use of perfusion-based magnetic resonance imaging. Insights Imaging 2022; 13: 102
  • 87 Smits M. Update on neuroimaging in brain tumours. Curr Opin Neurol 2021; 34: 497-504
  • 88 You SH, Yun TJ, Choi HJ. et al. Differentiation between primary CNS lymphoma and glioblastoma: qualitative and quantitative analysis using arterial spin labeling MR imaging. Eur Radiol 2018; 28: 3801-3810
  • 89 Lin L, Xue Y, Duan Q. et al. The role of cerebral blood flow gradient in peritumoral edema for differentiation of glioblastomas from solitary metastatic lesions. Oncotarget 2016; 7: 69051-69059
  • 90 Zeng Q, Jiang B, Shi F. et al. 3D Pseudocontinuous Arterial Spin-Labeling MR Imaging in the Preoperative Evaluation of Gliomas. AJNR Am J Neuroradiol 2017; 38: 1876-1883
  • 91 Yuan F, Salehi HA, Boucher Y. et al. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 1994; 54: 4564-4568
  • 92 Roberts HC, Roberts TP, Brasch RC. et al. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000; 21: 891-899
  • 93 Kong L, Chen H, Yang Y. et al. A meta-analysis of arterial spin labelling perfusion values for the prediction of glioma grade. Clin Radiol 2017; 72: 255-261
  • 94 Mao J, Deng D, Yang Z. et al. Pretreatment structural and arterial spin labeling MRI is predictive for p53 mutation in high-grade gliomas. Br J Radiol 2020; 93: 20200661
  • 95 Yoo RE, Yun TJ, Hwang I. et al. Arterial spin labeling perfusion-weighted imaging aids in prediction of molecular biomarkers and survival in glioblastomas. Eur Radiol 2020; 30: 1202-1211
  • 96 Dangouloff-Ros V, Deroulers C, Foissac F. et al. Arterial Spin Labeling to Predict Brain Tumor Grading in Children: Correlations between Histopathologic Vascular Density and Perfusion MR Imaging. Radiology 2016; 281: 553-566
  • 97 Pang H, Dang X, Ren Y. et al. 3D-ASL perfusion correlates with VEGF expression and overall survival in glioma patients: Comparison of quantitative perfusion and pathology on accurate spatial location-matched basis. J Magn Reson Imaging 2019; 50: 209-220
  • 98 Flies CM, Snijders TJ, Van Seeters T. et al. Perfusion imaging with arterial spin labeling (ASL)-MRI predicts malignant progression in low‑grade (WHO grade II) gliomas. Neuroradiology 2021; 63: 2023-2033
  • 99 de Wit MC, de Bruin HG, Eijkenboom W. et al. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 2004; 63: 535-537
  • 100 Taal W, Brandsma D, de Bruin HG. et al. Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 2008; 113: 405-410
  • 101 Hygino da Cruz Jr. LC, Rodriguez I, Domingues RC. et al. Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol 2011; 32: 1978-1985
  • 102 Jeck J, Kassubek R, Coburger J. et al. Bevacizumab in temozolomide refractory high-grade gliomas: single-centre experience and review of the literature. Ther Adv Neurol Disord 2018; 11: 1756285617753597
  • 103 Ozsunar Y, Mullins ME, Kwong K. et al. Glioma recurrence versus radiation necrosis? A pilot comparison of arterial spin-labeled, dynamic susceptibility contrast enhanced MRI, and FDG-PET imaging. Acad Radiol 2010; 17: 282-290
  • 104 Manning P, Daghighi S, Rajaratnam MK. et al. Differentiation of progressive disease from pseudoprogression using 3D PCASL and DSC perfusion MRI in patients with glioblastoma. J Neurooncol 2020; 147: 681-690
  • 105 McDonald RJ, McDonald JS, Kallmes DF. et al. Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging. Radiology 2015; 275: 772-782
  • 106 Lavrova A, Teunissen WHT, Warnert EAH. et al. Diagnostic Accuracy of Arterial Spin Labeling in Comparison With Dynamic Susceptibility Contrast-Enhanced Perfusion for Brain Tumor Surveillance at 3T MRI. Front Oncol 2022; 12: 849657
  • 107 Dugger BN, Dickson DW. Pathology of Neurodegenerative Diseases. Cold Spring Harb Perspect Biol 2017; 9
  • 108 Hou Y, Dan X, Babbar M. et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 2019; 15: 565-581
  • 109 Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 2013; 501: 45-51
  • 110 Sweeney MD, Zhao Z, Montagne A. et al. Blood-Brain Barrier: From Physiology to Disease and Back. Physiol Rev 2019; 99: 21-78
  • 111 Kisler K, Nelson AR, Montagne A. et al. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 2017; 18: 419-434
  • 112 Yan L, Liu CY, Wong KP. et al. Regional association of pCASL-MRI with FDG-PET and PiB-PET in people at risk for autosomal dominant Alzheimer’s disease. Neuroimage Clin 2018; 17: 751-760
  • 113 Dolui S, Li Z, Nasrallah IM. et al. Arterial spin labeling versus (18)F-FDG-PET to identify mild cognitive impairment. Neuroimage Clin 2020; 25: 102146
  • 114 Musiek ES, Chen Y, Korczykowski M. et al. Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer’s disease. Alzheimers Dement 2012; 8: 51-59
  • 115 Dolui S, Vidorreta M, Wang Z. et al. Comparison of PASL, PCASL, and background-suppressed 3D PCASL in mild cognitive impairment. Hum Brain Mapp 2017; 38: 5260-5273
  • 116 Riederer I, Bohn KP, Preibisch C. et al. Alzheimer Disease and Mild Cognitive Impairment: Integrated Pulsed Arterial Spin-Labeling MRI and (18)F-FDG PET. Radiology 2018; 288: 198-206
  • 117 Bryant AG, Manhard MK, Salat DH. et al. Heterogeneity of Tau Deposition and Microvascular Involvement in MCI and AD. Curr Alzheimer Res 2021; 18: 711-720
  • 118 Fazlollahi A, Calamante F, Liang X. et al. Increased cerebral blood flow with increased amyloid burden in the preclinical phase of alzheimer’s disease. J Magn Reson Imaging 2020; 51: 505-513
  • 119 van Dyck CH, Swanson CJ, Aisen P. et al. Lecanemab in Early Alzheimer’s Disease. N Engl J Med 2023; 388: 9-21
  • 120 Ssali T, Narciso L, Hicks J. et al. Concordance of regional hypoperfusion by pCASL MRI and (15)O-water PET in frontotemporal dementia: Is pCASL an efficacious alternative?. Neuroimage Clin 2022; 33: 102950
  • 121 Anazodo UC, Finger E, Kwan BYM. et al. Using simultaneous PET/MRI to compare the accuracy of diagnosing frontotemporal dementia by arterial spin labelling MRI and FDG-PET. Neuroimage Clin 2018; 17: 405-414
  • 122 Taswell C, Villemagne VL, Yates P. et al. 18F-FDG PET Improves Diagnosis in Patients with Focal-Onset Dementias. J Nucl Med 2015; 56: 1547-1553
  • 123 Poewe W, Seppi K, Tanner CM. et al. Parkinson disease. Nat Rev Dis Primers 2017; 3: 17013
  • 124 Dewan MC, Rattani A, Gupta S. et al. Estimating the global incidence of traumatic brain injury. J Neurosurg 2018; 1-18
  • 125 Management of Concussion/m TBIWG. VA/DoD Clinical Practice Guideline for Management of Concussion/Mild Traumatic Brain Injury. J Rehabil Res Dev 2009; 46: CP1-CP68
  • 126 Cassidy JD, Carroll LJ, Peloso PM. et al. Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med 2004; 28-60
  • 127 Bai G, Bai L, Cao J. et al. Sex differences in cerebral perfusion changes after mild traumatic brain injury: Longitudinal investigation and correlation with outcome. Brain Res 2019; 1708: 93-99
  • 128 Xu L, Ware JB, Kim JJ. et al. Arterial Spin Labeling Reveals Elevated Cerebral Blood Flow with Distinct Clusters of Hypo- and Hyperperfusion after Traumatic Brain Injury. J Neurotrauma 2021; 38: 2538-2548
  • 129 Churchill NW, Hutchison MG, Graham SJ. et al. Mapping brain recovery after concussion: From acute injury to 1 year after medical clearance. Neurology 2019; 93: e1980-e1992
  • 130 Barlow KM, Marcil LD, Dewey D. et al. Cerebral Perfusion Changes in Post-Concussion Syndrome: A Prospective Controlled Cohort Study. J Neurotrauma 2017; 34: 996-1004
  • 131 Li F, Lu L, Shang S. et al. Cerebral Blood Flow and Its Connectivity Deficits in Mild Traumatic Brain Injury at the Acute Stage. Neural Plast 2020; 2020: 2174371
  • 132 Churchill NW, Hutchison MG, Richards D. et al. The first week after concussion: Blood flow, brain function and white matter microstructure. Neuroimage Clin 2017; 14: 480-489
  • 133 Grossman EJ, Jensen JH, Babb JS. et al Cognitive impairment in mild traumatic brain injury: a longitudinal diffusional kurtosis and perfusion imaging study. AJNR Am J Neuroradiol 2013; 34: 951-957 , S951-953
  • 134 Brooks BL, Low TA, Plourde V. et al. Cerebral blood flow in children and adolescents several years after concussion. Brain Inj 2019; 33: 233-241
  • 135 Stephens JA, Liu P, Lu H. et al. Cerebral Blood Flow after Mild Traumatic Brain Injury: Associations between Symptoms and Post-Injury Perfusion. J Neurotrauma 2018; 35: 241-248
  • 136 Zhao P, Zhu P, Zhang D. et al. Sex Differences in Cerebral Blood Flow and Serum Inflammatory Cytokines and Their Relationships in Mild Traumatic Brain Injury. Front Neurol 2021; 12: 755152
  • 137 Vedung F, Fahlstrom M, Wall A. et al. Chronic cerebral blood flow alterations in traumatic brain injury and sports-related concussions. Brain Inj 2022; 36: 948-960
  • 138 Ware JB, Dolui S, Duda J. et al. Relationship of Cerebral Blood Flow to Cognitive Function and Recovery in Early Chronic Traumatic Brain Injury. J Neurotrauma 2020; 37: 2180-2187
  • 139 Haber M, Amyot F, Kenney K. et al. Vascular Abnormalities within Normal Appearing Tissue in Chronic Traumatic Brain Injury. J Neurotrauma 2018; 35: 2250-2258
  • 140 Kim J, Whyte J, Patel S. et al. Resting cerebral blood flow alterations in chronic traumatic brain injury: an arterial spin labeling perfusion FMRI study. J Neurotrauma 2010; 27: 1399-1411
  • 141 Champagne AA, Coverdale NS, Germuska M. et al. Multi-parametric analysis reveals metabolic and vascular effects driving differences in BOLD-based cerebrovascular reactivity associated with a history of sport concussion. Brain Inj 2019; 33: 1479-1489
  • 142 Stovner LJ, Hagen K, Linde M. et al. The global prevalence of headache: an update, with analysis of the influences of methodological factors on prevalence estimates. J Headache Pain 2022; 23: 34
  • 143 Ashina M, Hansen JM, Do TP. et al. Migraine and the trigeminovascular system-40 years and counting. Lancet Neurol 2019; 18: 795-804
  • 144 Charles A. The pathophysiology of migraine: implications for clinical management. Lancet Neurol 2018; 17: 174-182
  • 145 Goadsby PJ, Holland PR. An Update: Pathophysiology of Migraine. Neurol Clin 2019; 37: 651-671
  • 146 Stankewitz A, Keidel L, Rehm M. et al. Migraine attacks as a result of hypothalamic loss of control. NeuroImage: Clinical 2021; 32: 102784
  • 147 Meylakh N, Marciszewski KK, Di Pietro F. et al. Altered regional cerebral blood flow and hypothalamic connectivity immediately prior to a migraine headache. Cephalalgia 2020; 40: 448-460
  • 148 Younis S, Christensen CE, Vestergaard MB. et al. Glutamate levels and perfusion in pons during migraine attacks: a 3T MRI study using proton spectroscopy and arterial spin labeling. Journal of Cerebral Blood Flow & Metabolism 2021; 41: 604-616
  • 149 Gil-Gouveia R, Pinto J, Figueiredo P. et al. An arterial spin labeling MRI perfusion study of migraine without aura attacks. Frontiers in neurology 2017; 8: 280
  • 150 Zhang D, Huang X, Mao C. et al. Assessment of normalized cerebral blood flow and its connectivity with migraines without aura during interictal periods by arterial spin labeling. The Journal of Headache and Pain 2021; 22: 1-10
  • 151 Liu M, Sun Y, Li X. et al. Hypoperfusion in nucleus accumbens in chronic migraine using 3D pseudo-continuous arterial spin labeling imaging MRI. The Journal of Headache and Pain 2022; 23: 1-7
  • 152 Michels L, Villanueva J, O’Gorman R. et al. Interictal hyperperfusion in the higher visual cortex in patients with episodic migraine. Headache: The Journal of Head and Face Pain 2019; 59: 1808-1820
  • 153 Hodkinson DJ, Veggeberg R, Wilcox SL. et al. Primary somatosensory cortices contain altered patterns of regional cerebral blood flow in the interictal phase of migraine. PLoS One 2015; 10: e0137971
  • 154 Youssef AM, Ludwick A, Wilcox SL. et al. In child and adult migraineurs the somatosensory cortex stands out… again: An arterial spin labeling investigation. Human brain mapping 2017; 38: 4078-4087
  • 155 Fu T, Liu L, Huang X. et al. Cerebral blood flow alterations in migraine patients with and without aura: An arterial spin labeling study. The Journal of Headache and Pain 2022; 23: 1-9
  • 156 Cobb-Pitstick K, Munjal N, Safier R. et al. Time course of cerebral perfusion changes in children with migraine with aura mimicking stroke. American Journal of Neuroradiology 2018; 39: 1751-1755
  • 157 Uetani H, Kitajima M, Sugahara T. et al. Perfusion abnormality on three-dimensional arterial spin labeling with a 3T MR system in pediatric and adolescent patients with migraine. Journal of the Neurological Sciences 2018; 395: 41-46
  • 158 Cadiot D, Longuet R, Bruneau B. et al. Magnetic resonance imaging in children presenting migraine with aura: association of hypoperfusion detected by arterial spin labelling and vasospasm on MR angiography findings. Cephalalgia 2018; 38: 949-958
  • 159 Boulouis G, Shotar E, Dangouloff-Ros V. et al. Magnetic resonance imaging arterial‐spin‐labelling perfusion alterations in childhood migraine with atypical aura: a case–control study. Developmental Medicine & Child Neurology 2016; 58: 965-969