RSS-Feed abonnieren
DOI: 10.1055/a-2119-6448
Current Imaging Strategies in Patients with Abdominal Aortic Aneurysms
Aktuelle Bildgebungsstrategien bei Patienten mit BauchaortenaneurysmaAbstract
Background An abdominal aortic aneurysm (AAA) is defined as a localized dilatation of the abdominal aorta of ≥ 3 cm. With a prevalence of 4–8 %, AAA is one of the most common vascular diseases in Western society. Radiological imaging is an elementary component in the diagnosis, monitoring, and treatment planning of AAA patients.
Method This is a narrative review article on preoperative imaging strategies of AAA, incorporating expert opinions based on the current literature and standard-of-care practices from our own center. Examples are provided to illustrate clinical cases from our institution.
Results and Conclusion Radiological imaging plays a pivotal role in the initial diagnosis and monitoring of patients with AAA. Ultrasound is the mainstay imaging modality for AAA screening and surveillance. Contrast-enhanced CT angiography is currently considered the gold standard for preoperative imaging and image-based treatment planning in AAA repair. New non-contrast MR angiography techniques are robustly applicable and allow precise determination of aortic diameters, which is of critical importance, particularly with regard to current diameter-based surgical treatment guidelines. 3D imaging with multiplanar reformation and automatic centerline positioning enables more accurate assessment of the maximum aortic diameter. Modern imaging techniques such as 4D flow MRI have the potential to further improve individualized risk stratification in patients with AAA.
Key points:
-
Ultrasound is the mainstay imaging modality for AAA screening and monitoring
-
Contrast-enhanced CT angiography is the gold standard for preoperative imaging in AAA repair
-
Non-contrast MR angiography allows for accurate monitoring of aortic diameters in AAA patients
-
Measurement of aortic diameters is more accurate with 3D-CT/MRI compared to ultrasound
-
Research seeks new quantitative imaging biomarkers for AAA risk stratification, e. g., using 4D flow MRI
Zusammenfassung
Hintergrund Das abdominelle Aortenaneurysma (AAA) ist definiert als eine lokale Erweiterung der abdominellen Aorta auf ≥ 3 cm. Mit einer Prävalenz von 4–8 % ist das AAA eine der häufigsten Gefäßerkrankungen in der westlichen Gesellschaft. Die radiologische Bildgebung ist ein elementarer Bestandteil sowohl in der Diagnosestellung als auch der Überwachung und operativen Planung von Patienten mit Bauchaortenaneurysma.
Methode Dies ist ein narrativer Übersichtsartikel zu präoperativen Bildgebungsstrategien beim AAA, der Expertenmeinungen auf der Grundlage der aktuellen Literatur und Standardverfahren aus unserem eigenen Zentrum berücksichtigt. Anhand von Beispielen werden klinische Fälle aus unserer Einrichtung illustriert.
Ergebnisse und Schlussfolgerungen Die radiologische Bildgebung spielt eine zentrale Rolle bei der Erstdiagnose und Überwachung von Patienten mit AAA. Ultraschall ist das wichtigste bildgebende Verfahren für das Screening und die Überwachung des AAA. Die kontrastmittelverstärkte CT-Angiographie ist derzeit der Goldstandard für die präoperative Bildgebung und bildbasierte Behandlungsplanung. Neue kontrastfreie MR-Angiografietechniken sind robust einsetzbar und ermöglichen eine präzise Bestimmung des Aortendurchmessers, der insbesondere im Hinblick auf die hierauf basierenden chirurgischen Therapierichtlinien von entscheidender Bedeutung ist. Die 3D-CT- oder MRT-Bildgebung mittels multiplanarer Reformation und automatischer Centerline-Positionierung erlaubt eine präzisere Messung des maximalen Aortendurchmessers. Moderne bildgebende Verfahren wie die 4D-Fluss-MRT haben das Potenzial, die individualisierte Risikostratifizierung bei Patienten mit AAA weiter zu verbessern.
Kernaussagen:
-
Ultraschall ist das wichtigste bildgebende Verfahren für das AAA-Screening und die Überwachung
-
Die kontrastverstärkte CT-Angiographie gilt derzeit als Goldstandard zur präoperativen Bildgebung bei der AAA-Reparatur
-
Die kontrastmittelfreie MR-Angiographie ermöglicht eine genaue Überwachung des Aortendurchmessers bei AAA-Patienten
-
3D-CT- oder MR-Bildgebung mit multiplanarer Reformation ermöglicht im Vergleich zum Ultraschall eine genauere Bestimmung des maximalen Aortendurchmessers
-
Die Forschung sucht nach neuen quantitativen Biomarkern für die AAA-Risikostratifizierung, z. B. mit Hilfe der 4D-Fluss-MRT
Zitierweise
-
Ristow I, Riedel C, Lenz A et al. Current Imaging Strategies in Patients with Abdominal Aortic Aneurysms. Fortschr Röntgenstr 2024; 196: 52 – 61
Key words
abdominal aortic aneurysm - intraluminal thrombus - angiography - growth prediction - diameterPublikationsverlauf
Eingereicht: 01. März 2023
Angenommen: 14. Juni 2023
Artikel online veröffentlicht:
12. September 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Erbel R, Aboyans V, Boileau C. et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J 2014; 35: 2873-2926 DOI: 10.1093/EURHEARTJ/EHU281.
- 2 Norman PE, Jamrozik K, Lawrence-Brown MM. et al. Population based randomised controlled trial on impact of screening on mortality from abdominal aortic aneurysm. BMJ 2004; 329: 1259 DOI: 10.1136/BMJ.329.7477.1259.
- 3 Lindholt JS, Juul S, Fasting H. et al. Screening for abdominal aortic aneurysms: single centre randomised controlled trial. BMJ 2005; 330: 750 DOI: 10.1136/BMJ.38369.620162.82.
- 4 Scott RAP, Ashton HA, Buxton MJ. et al. The Multicentre Aneurysm Screening Study (MASS) into the effect of abdominal aortic aneurysm screening on mortality in men: a randomised controlled trial. Lancet 2002; 360: 1531-1539 DOI: 10.1016/S0140-6736(02)11522-4.
- 5 Ashton HA, Gao L, Kim LG. et al. Fifteen-year follow-up of a randomized clinical trial of ultrasonographic screening for abdominal aortic aneurysms. Br J Surg 2007; 94: 696-701 DOI: 10.1002/BJS.5780.
- 6 Lo RC, Schermerhorn ML. Abdominal aortic aneurysms in women. J Vasc Surg 2016; 63: 839-844 DOI: 10.1016/J.JVS.2015.10.087.
- 7 Scott RAP, Ashton HA, Kay DN. Abdominal aortic aneurysm in 4237 screened patients: Prevalence, development and management over 6 years. Br J Surg 2005; 78: 1122-1125 DOI: 10.1002/BJS.1800780929.
- 8 Kuivaniemi H, Ryer EJ, Elmore JR. et al. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther 2015; 13: 975 DOI: 10.1586/14779072.2015.1074861.
- 9 Carino D, Sarac TP, Ziganshin BA. et al. Abdominal Aortic Aneurysm: Evolving Controversies and Uncertainties. Int J Angiol 2018; 27: 58 DOI: 10.1055/S-0038-1657771.
- 10 Janus SE, Chami T, Mously H. et al. Proportionate and Absolute Vascular Disease Mortality by Race and Sex in the United States From 1999 to 2019. J Am Heart Assoc 2022; 11: 25276 DOI: 10.1161/JAHA.121.025276.
- 11 Thompson RW, Curci JA, Ennis TL. et al. Pathophysiology of Abdominal Aortic Aneurysms. Ann N Y Acad Sci 2006; 1085: 59-73 DOI: 10.1196/ANNALS.1383.029.
- 12 Nordon IM, Hinchliffe RJ, Loftus IM. et al. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat Rev Cardiol 2010; 8 (02) 92-102 DOI: 10.1038/nrcardio.2010.180.
- 13 Tong J, Holzapfel GA. Structure, Mechanics, and Histology of Intraluminal Thrombi in Abdominal Aortic Aneurysms. Ann Biomed Eng 2015; 43: 1488-1501 DOI: 10.1007/S10439-015-1332-5.
- 14 Vorp DA, Lee PC, Wang DHJ. et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J Vasc Surg 2001; 34: 291-299 DOI: 10.1067/MVA.2001.114813.
- 15 Wang DHJ, Makaroun MS, Webster MW. et al. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg 2002; 36: 598-604 DOI: 10.1067/MVA.2002.126087.
- 16 Vorp DA. Biomechanics of abdominal aortic aneurysm. J Biomech 2007; 40: 1887 DOI: 10.1016/J.JBIOMECH.2006.09.003.
- 17 Lederle FA, Johnson GR, Wilson SE. et al. Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA 2002; 287: 2968-2972 DOI: 10.1001/JAMA.287.22.2968.
- 18 Schanzer A, Oderich GS. Management of Abdominal Aortic Aneurysms. N Engl J Med 2021; 385: 1690-1698 DOI: 10.1056/NEJMCP2108504.
- 19 Chaikof EL, Dalman RL, Eskandari MK. et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg 2018; 67: 2-77.e2 DOI: 10.1016/J.JVS.2017.10.044.
- 20 Kuhn M, Bonnin RLL, Davey MJ. et al. Emergency Department Ultrasound Scanning for Abdominal Aortic Aneurysm: Accessible, Accurate, and Advantageous. Ann Emerg Med 2000; 36: 219-223 DOI: 10.1067/MEM.2000.108616.
- 21 Costantino TG, Bruno EC, Handly N. et al. Accuracy of emergency medicine ultrasound in the evaluation of abdominal aortic aneurysm. J Emerg Med 2005; 29: 455-460 DOI: 10.1016/J.JEMERMED.2005.02.016.
- 22 Zhu C, Leach JR, Wang Y. et al. Intraluminal thrombus predicts rapid growth of abdominal aortic aneurysms. Radiology 2020; 294: 707-713 DOI: 10.1148/RADIOL.2020191723.
- 23 Haller SJ, Crawford JD, Courchaine KM. et al. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm. J Vasc Surg 2018; 67: 1051-1058.e1 DOI: 10.1016/J.JVS.2017.08.069.
- 24 Shreibati JB, Baker LC, Hlatky MA. et al. Impact of the Screening Abdominal Aortic Aneurysms Very Efficiently (SAAAVE) Act on Abdominal Ultrasonography Use Among Medicare Beneficiaries. Arch Intern Med 2012; 172: 1456-1462 DOI: 10.1001/ARCHINTERNMED.2012.4268.
- 25 Abdominal aortic aneurysm: diagnosis and management NICE guideline. 2020 Accessed: 07.11.2022
- 26 Wanhainen A, Bjrck M. The Swedish experience of screening for abdominal aortic aneurysm. J Vasc Surg 2011; 53: 1164-1165 DOI: 10.1016/J.JVS.2010.10.099.
- 27 Manning BJ, Kristmundsson T, Sonesson B. et al. Abdominal aortic aneurysm diameter: a comparison of ultrasound measurements with those from standard and three-dimensional computed tomography reconstruction. J Vasc Surg 2009; 50: 263-268 DOI: 10.1016/J.JVS.2009.02.243.
- 28 Sprouse LR, Meier GH, LeSar CJ. et al. Comparison of abdominal aortic aneurysm diameter measurements obtained with ultrasound and computed tomography: Is there a difference?. J Vasc Surg 2003; 38: 466-471 DOI: 10.1016/S0741-5214(03)00367-7.
- 29 Schäberle W, Leyerer L, Schierling W. et al. Ultraschalldiagnostik der abdominellen Aorta. Gefasschirurgie 2015; 20: 22-27 DOI: 10.1007/S00772-014-1323-0.
- 30 Chiu KWH, Ling L, Tripathi V. et al. Ultrasound Measurement for Abdominal Aortic Aneurysm Screening: A Direct Comparison of the Three Leading Methods. Eur J Vasc Endovasc Surg 2014; 47: 367-373 DOI: 10.1016/J.EJVS.2013.12.026.
- 31 Meecham L, Evans R, Buxton P. et al. Abdominal aortic aneurysm diameters: A study on the discrepancy between inner to inner and outer to outer measurements. Eur J Vasc Endovasc Surg 2015; 49: 28-32 DOI: 10.1016/J.EJVS.2014.10.002.
- 32 Bredahl K, Taudorf M, Long A. et al. Three-dimensional Ultrasound Improves the Accuracy of Diameter Measurement of the Residual Sac in EVAR Patients. Eur J Vasc Endovasc Surg 2013; 46: 525-532 DOI: 10.1016/J.EJVS.2013.09.012.
- 33 Long A, Rouet L, Debreuve A. et al. Abdominal Aortic Aneurysm Imaging with 3-D Ultrasound: 3-D-Based Maximum Diameter Measurement and Volume Quantification. Ultrasound Med Biol 2013; 39: 1325-1336 DOI: 10.1016/J.ULTRASMEDBIO.2013.03.008.
- 34 Kontopodis N, Lioudaki S, Pantidis D. et al. Advances in determining abdominal aortic aneurysm size and growth. World J Radiol 2016; 8: 148 DOI: 10.4329/WJR.V8.I2.148.
- 35 Renapurkar RD, Setser RM, O’Donnell TP. et al. Aortic volume as an indicator of disease progression in patients with untreated infrarenal abdominal aneurysm. Eur J Radiol 2012; 81: e87-e93 DOI: 10.1016/J.EJRAD.2011.01.077.
- 36 Li X, Staub D, Rafailidis V. et al. Contrast-enhanced ultrasound of the abdominal aorta – current status and future perspectives. Vasa 2019; 48: 115-125 DOI: 10.1024/0301-1526/A000749.
- 37 Chowdhury MM, Zieliński LP, Sun JJ. et al. Editor’s Choice – Calcification of Thoracic and Abdominal Aneurysms is Associated with Mortality and Morbidity. Eur J Vasc Endovasc Surg 2018; 55: 101 DOI: 10.1016/J.EJVS.2017.11.007.
- 38 Dhillon PS, Butt MW, Pollock G. et al. Incidental extravascular findings in CT angiograms in patients post endovascular abdominal aortic aneurysm repair: clinical relevance and frequency. CVIR Endovasc 2018; 1: 1-8 DOI: 10.1186/S42155-018-0016-2.
- 39 Bekanntmachung der aktualisierten diagnostischen Referenzwerte für diagnostische und interventionelle Röntgenanwendungen. 2022 https://www.bfs.de/SharedDocs/Downloads/BfS/DE/fachinfo/ion/drw-roentgen.pdf;jsessionid=CBF57BC2BAFF0A0A9386C252A2815C31.2_cid339?__blob=publicationFile&v=11 Accessed: 02.03.2023
- 40 Nijhof WH, Baltussen EJM, Kant IMJ. et al. Low-dose CT angiography of the abdominal aorta and reduced contrast medium volume: Assessment of image quality and radiation dose. Clin Radiol 2016; 71: 64-73 DOI: 10.1016/J.CRAD.2015.10.007.
- 41 Fink MA, Stoll S, Melzig C. et al. Prospective Study of Low-Radiation and Low-Iodine Dose Aortic CT Angiography in Obese and Non-Obese Patients: Image Quality and Impact of Patient Characteristics. Diagnostics 2022; 12: 675 DOI: 10.3390/DIAGNOSTICS12030675.
- 42 Henes FO, Pickhardt PJ, Herzyk A. et al. CT angiography in the setting of suspected acute mesenteric ischemia: prevalence of ischemic and alternative diagnoses. Abdom Radiol 2017; 42: 1152-1161 DOI: 10.1007/S00261-016-0988-0/FIGURES/5.
- 43 Sprouse LR, Meier GH, Parent FN. et al. Is Ultrasound More Accurate than Axial Computed Tomography for Determination of Maximal Abdominal Aortic Aneurysm Diameter?. Eur J Vasc Endovasc Surg 2004; 28: 28-35 DOI: 10.1016/J.EJVS.2004.03.022.
- 44 Weinrich JM, Lenz A, Girdauskas E. et al. Current and Emerging Imaging Techniques in Patients with Genetic Aortic Syndromes. Fortschr Rontgenstr 2020; 192: 50-58 DOI: 10.1055/A-0914-3321/ID/JR000-4.
- 45 Bannas P, Groth M, Rybczynski M. et al. Assessment of aortic root dimensions in patients with suspected Marfan syndrome: Intraindividual comparison of contrast-enhanced and non-contrast magnetic resonance angiography with echocardiography. Int J Cardiol 2013; 167: 190-196 DOI: 10.1016/J.IJCARD.2011.12.041.
- 46 Groth M, Henes FO, Müllerleile K. et al. Accuracy of thoracic aortic measurements assessed by contrast enhanced and unenhanced magnetic resonance imaging. Eur J Radiol 2012; 81: 762-766 DOI: 10.1016/J.EJRAD.2011.01.071.
- 47 Veldhoen S, Behzadi C, Derlin T. et al. Exact monitoring of aortic diameters in Marfan patients without gadolinium contrast: intraindividual comparison of 2D SSFP imaging with 3D CE-MRA and echocardiography. Eur Radiol 2015; 25: 872-882 DOI: 10.1007/S00330-014-3457-6/FIGURES/5.
- 48 Krishnam MS, Tomasian A, Malik S. et al. Image quality and diagnostic accuracy of unenhanced SSFP MR angiography compared with conventional contrast-enhanced MR angiography for the assessment of thoracic aortic diseases. Eur Radiol 2010; 20: 1311 DOI: 10.1007/S00330-009-1672-3.
- 49 Krishnam MS, Tomasian A, Deshpande V. et al. Noncontrast 3D steady-state free-precession magnetic resonance angiography of the whole chest using nonselective radiofrequency excitation over a large field of view: Comparison with single-phase 3D contrast-enhanced magnetic resonance angiography. Invest Radiol 2008; 43: 411-420 DOI: 10.1097/RLI.0B013E3181690179.
- 50 Avanesov M, Weinrich JM, Sinn M. et al. Intraindividual comparison of 1.5 T and 3 T non-contrast MR angiography for monitoring of aortic root diameters in Marfan patients. Int J Cardiol 2021; 337: 119-126 DOI: 10.1016/J.IJCARD.2021.04.053.
- 51 Edelman RR, Carr M, Koktzoglou I. Advances in non-contrast quiescent-interval slice-selective (QISS) magnetic resonance angiography. Clin Radiol 2019; 74: 29-36 DOI: 10.1016/j.crad.2017.12.003.
- 52 Edelman RR, Sheehan JJ, Dunkle E. et al. Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral vascular disease: Technical considerations and clinical feasibility. Magn Reson Med 2010; 63: 951-958 DOI: 10.1002/MRM.22287.
- 53 Lin YT, Chen HJ, Chen PC. et al. Increased Risk of Peripheral Arterial Disease in Patients With Abdominal Aortic Aneurysm: A Retrospective Cohort Study (Version 5). Angiology 2019; 70: 41-46 DOI: 10.1177/0003319718757615.
- 54 Tan EJ, Zhang S, Tirukonda P. et al. REACT – A novel flow-independent non-gated non-contrast MR angiography technique using magnetization-prepared 3D non-balanced dual-echo dixon method: Preliminary clinical experience. Eur J Radiol Open 2020; 7: 100238 DOI: 10.1016/J.EJRO.2020.100238.
- 55 Yoneyama M, Zhang S, Hu HH. et al. Free-breathing non-contrast-enhanced flow-independent MR angiography using magnetization-prepared 3D non-balanced dual-echo Dixon method: A feasibility study at 3 Tesla. Magn Reson Imaging 2019; 63: 137-146 DOI: 10.1016/J.MRI.2019.08.017.
- 56 Wright F, Warncke M, Sinn M. et al. Assessment of aortic diameter in Marfan patients: intraindividual comparison of 3D-Dixon and 2D-SSFP magnetic resonance imaging. Eur Radiol 2022; 1-11 DOI: 10.1007/S00330-022-09162-Y.
- 57 Zhu C, Tian B, Leach JR. et al. Non-contrast 3D black blood MRI for abdominal aortic aneurysm surveillance: comparison with CT angiography. Eur Radiol 2017; 27: 1787 DOI: 10.1007/S00330-016-4559-0.
- 58 Zhu C, Cao L, Wen Z. et al. Surveillance of abdominal aortic aneurysm using accelerated 3D non-contrast black-blood cardiovascular magnetic resonance with compressed sensing (CS-DANTE-SPACE). J Cardiovasc Magn Reson 2019; 21: 1-11 DOI: 10.1186/S12968-019-0571-2.
- 59 Kramer CM, Cerilli LA, Hagspiel K. et al. Magnetic Resonance Imaging Identifies the Fibrous Cap in Atherosclerotic Abdominal Aortic Aneurysm. Circulation 2004; 109: 1016 DOI: 10.1161/01.CIR.0000116767.95046.C2.
- 60 de La Motte L, Pedersen MM, Thomsen C. et al. Categorization of aortic aneurysm thrombus morphology by magnetic resonance imaging. Eur J Radiol 2013; 82: e544-e549 DOI: 10.1016/J.EJRAD.2013.06.018.
- 61 Castrucci M, Mellone R, Vanzulli A. et al. Mural thrombi in abdominal aortic aneurysms: MR imaging characterization--useful before endovascular treatment?. Radiology 1995; 197: 135-139 DOI: 10.1148/RADIOLOGY.197.1.7568811.
- 62 Nguyen VL, Leiner T, Hellenthal FAMVI. et al. Abdominal Aortic Aneurysms with High Thrombus Signal Intensity on Magnetic Resonance Imaging are Associated with High Growth Rate. Eur J Vasc Endovasc Surg 2014; 48: 676-684 DOI: 10.1016/J.EJVS.2014.04.025.
- 63 Mathur M, Jones JR, Weinreb JC. Gadolinium deposition and nephrogenic systemic fibrosis: A radiologist’s primer. Radiographics 2020; 40: 153-162 DOI: 10.1148/RG.2020190110.
- 64 McDonald RJ, Levine D, Weinreb J. et al. Gadolinium retention: A research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology 2018; 289: 517-534 DOI: 10.1148/RADIOL.2018181151.
- 65 Courtois A, Nusgens BV, Hustinx R. et al. 18F-FDG Uptake Assessed by PET/CT in Abdominal Aortic Aneurysms Is Associated with Cellular and Molecular Alterations Prefacing Wall Deterioration and Rupture. J Nucl Med 2013; 54: 1740-1747 DOI: 10.2967/JNUMED.112.115873.
- 66 Barwick TD, Lyons OTA, Mikhaeel NG. et al. 18F-FDG PET-CT uptake is a feature of both normal diameter and aneurysmal aortic wall and is not related to aneurysm size. Eur J Nucl Med Mol Imaging 2014; 41: 2310-2318 DOI: 10.1007/S00259-014-2865-9/FIGURES/2.
- 67 Shi S, Orbay H, Yang Y. et al. PET Imaging of Abdominal Aortic Aneurysm with 64Cu-Labeled Anti-CD105 Antibody Fab Fragment. J Nucl Med 2015; 56: 927 DOI: 10.2967/JNUMED.114.153098.
- 68 Lenz A, Petersen J, Riedel C. et al. 4D flow cardiovascular magnetic resonance for monitoring of aortic valve repair in bicuspid aortic valve disease. J Cardiovasc Magn Reson 2020; 22: 1-10 DOI: 10.1186/S12968-020-00608-0/TABLES/4.
- 69 Motosugi U, Roldán-Alzate A, Bannas P. et al. Four-dimensional Flow MRI as a marker for risk stratification of gastroesophageal varices in patients with liver cirrhosis. Radiology 2019; 290: 101-107 DOI: 10.1148/RADIOL.2018180230.
- 70 Bannas P, Roldán-Alzate A, Johnson KM. et al. Longitudinal Monitoring of Hepatic Blood Flow before and after TIPS by Using 4D-Flow MR Imaging. Radiology 2016; 281: 574 DOI: 10.1148/RADIOL.2016152247.
- 71 Riedel C, Lenz A, Fischer L. et al. Abdominal Applications of 4D Flow MRI. Fortschr Rontgenstr 2021; 193: 388-398 DOI: 10.1055/A-1271-7405/ID/JR314-2.
- 72 Riedel C, Ristow I, Lenz A. et al. Validation of 4D flow cardiovascular magnetic resonance in TIPS stent grafts using a 3D-printed flow phantom. J Cardiovasc Magn Reson 2023; 25: 9 DOI: 10.1186/S12968-023-00920-5.
- 73 Ziegler M, Welander M, Lantz J. et al. Visualizing and quantifying flow stasis in abdominal aortic aneurysms in men using 4D flow MRI. Magn Reson Imaging 2019; 57: 103-110 DOI: 10.1016/J.MRI.2018.11.003.
- 74 Trenti C, Ziegler M, Bjarnegård N. et al. Wall shear stress and relative residence time as potential risk factors for abdominal aortic aneurysms in males: a 4D flow cardiovascular magnetic resonance case–control study. J Cardiovasc Magn Reson 2022; 24: 1-12 DOI: 10.1186/S12968-022-00848-2.
- 75 Erhart P, Grond-Ginsbach C, Hakimi M. et al. Finite element analysis of abdominal aortic aneurysms: Predicted rupture risk correlates with aortic wall histology in individual patients. J Endovasc Ther 2014; 21: 556-564 DOI: 10.1583/14-4695.1.
- 76 Venkatasubramaniam AK, Fagan MJ, Mehta T. et al. A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Ruptured and Non-ruptured Abdominal Aortic Aneurysms. Eur J Vasc Endovasc Surg 2004; 28: 168-176 DOI: 10.1016/J.EJVS.2004.03.029.
- 77 Basciano C, Kleinstreuer C, Hyun S. et al. A Relation Between Near-Wall Particle-Hemodynamics and Onset of Thrombus Formation in Abdominal Aortic Aneurysms. Ann Biomed Eng 2011; 39: 2010 DOI: 10.1007/S10439-011-0285-6.
- 78 Derwich W, Wittek A, Pfister K. et al. High Resolution Strain Analysis Comparing Aorta and Abdominal Aortic Aneurysm with Real Time Three Dimensional Speckle Tracking Ultrasound. Eur J Vasc Endovasc Surg 2016; 51: 187-193 DOI: 10.1016/J.EJVS.2015.07.042.