Subscribe to RSS
DOI: 10.1055/a-2122-1573
A Photoinduced Palladium-Catalyzed Cascade Reaction for the Synthesis of Chiral Piperidines with Chiral Amino Acid Derivatives and 1,3-Dienes
We are grateful for financial support from NSFC (21971231).
Abstract
A photoinduced palladium-catalyzed cascade reaction involving remote C(sp3)–H functionalization and intramolecular Tsuji–Trost annulation is developed. The reaction is proposed to proceed through a sequence involving the amidyl radical generation, 1,5-HAT-mediated alkyl radical formation, and subsequent difunctionalization of 1,3-dienes. Without the use of exogeneous photosensitizers and external oxidants, the reaction provided an efficient approach to multi-substituted chiral piperidines in high yields, employing readily available chiral amino acid derivatives and 1,3-dienes as the substrates. In most cases, the syn/anti ratio of the product could be further improved by treatment with catalytic amount of iron salt.
Key words
excited-state Pd catalysis - chiral piperidines - amino acids - 1,3-dienes - Tsuji–Trost annulationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2122-1573.
- Supporting Information
Publication History
Received: 13 May 2023
Accepted after revision: 03 July 2023
Accepted Manuscript online:
03 July 2023
Article published online:
14 August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Monaco MR, Renzi P, Scarpino Schietroma DM, Bella M. Org. Lett. 2011; 13: 4546
- 2 Vardanyan R. Piperidine-Based Drug Discovery . Elsevier; Amsterdam: 2017: 299
- 3a Adger B, Dyer U, Hutton G, Woods M. Tetrahedron Lett. 1996; 37: 6399
- 3b Kumar S, Ramachandran U. Tetrahedron Lett. 2005; 46: 19
- 3c Heppolette CA. A, Brunnen D, Bampoe S, Odor PM. Clin. Pharmacokinet. 2020; 59: 715
- 4a Owen MD, Dean LS. Expert Opin. Pharmacother. 2000; 1: 325
- 4b Tolska HK, Takala A, Blomgren K, Hamunen K, Kontinen V. Anesth. Analg. 2017; 124: 1459
- 5a Fries D, Portoghese PS. J. Med. Chem. 1974; 17: 990
- 5b Yudin MA, Vengerovich NG, Sagalov GS, Vahvijanen MS, Bykov VN, Chepur SV. Bull. Exp. Biol. Med. 2016; 162: 215
- 5c Casy AF, McErlane K. J. Pharm. Pharmacol. 2011; 23: 68
- 6a Aliter KF, Al-Horani RA. Cardiovasc. Drugs Ther. 2021; 35: 195
- 6b McKeage K, Plosker GL. Drugs 2001; 61: 515
- 6c Shah H, Papolos AI, Molina EJ, Najjar SS, Kadakkal A, Hofmeyer M, Kenigsberg BB, Sheikh FH, Lam PH, Kitahara H, Cohen JE, Peters L, Wllis CG, Barnett CF. J. Heart Lung Transplant. 2021; 40
- 6d Elagizi S, Davis K. Thromb. Res. 2018; 163: 60
- 7a Kaplan HR, Mertz TE, Steffe TJ. Am. J. Cardiol. 1987; 59: H2
- 7b Ellenbogen KA, Roark SF, Sintetos AL, Smith MS, McCarthy EA, Smith WM, Kates RE, Pritchett EL. C. Clin. Pharmacol. Ther. 1987; 42: 405
- 7c Martin RA, De La Iglesia FA. Am. J. Cardiol. 1987; 59: H10
- 8a Bates RW, Ko W, Barát V. Org. Biomol. Chem. 2020; 18: 810
- 8b Kaur G, Devi M, Kumari A, Devi R, Banerjee B. ChemistrySelect 2018; 3: 9892
- 8c Kaur G, Devi P, Thakur S, Kumar A, Chandel R, Banerjee B. ChemistrySelect 2019; 4: 2181
- 8d Kaur N, Ahlawat N, Verma Y, Grewal P, Bhardwaj P, Jangid NK. Synth. Commun. 2020; 50: 1075
- 8e Neto JS. S, Zeni G. Tetrahedron 2020; 76: 130876
- 8f Park S. Chin. J. Chem. 2019; 37: 1057
- 8g Sbei N, Listratova AV, Titov AA, Voskressensky LG. Synthesis 2019; 51: 2455
- 8h Vargas DF, Larghi EL, Kaufman TS. Nat. Prod. Rep. 2019; 36: 354
- 9 Liu J, Han J, Izawa K, Sato T, White S, Meanwell NA, Soloshonok VA. Eur. J. Med. Chem. 2020; 208: 112736
- 10 Sardina FJ, Rapoport H. Chem. Rev. 1996; 96: 1825
- 11a Reddy LR, Reddy BV. S, Corey EJ. Org. Lett. 2006; 8: 2819
- 11b Reddy BV. S, Reddy LR, Corey EJ. Org. Lett. 2006; 8: 3391
- 11c Sen S, Das J, Maiti D. Tetrahedron Chem. 2022; 1: 100005
- 11d Mondal S, Chowdhury S. Adv. Synth. Catal. 2018; 360: 1884
- 11e Wei W, Zhao X. Org. Lett. 2022; 24: 1780
- 11f Wu J, Kaplaneris N, Ni S, Kaltenhauser F, Ackermann L. Chem. Sci. 2020; 11: 6521
- 11g Liu Y, Wang Y, Dai W, Huang W, Li Y, Liu H. Angew. Chem. Int. Ed. 2020; 59: 3491
- 11h Thrimurtulu N, Khan S, Maity S, Volla CM. R, Maiti D. Chem. Commun. 2017; 53: 12457
- 11i Jiang H, He J, Liu T, Yu JQ. J. Am. Chem. Soc. 2016; 138: 2055
- 11j Wang B, Lu C, Zhang SY, He G, Nack WA, Chen G. Org. Lett. 2014; 16: 6260
- 11k He G, Chen G. Angew. Chem. Int. Ed. 2011; 50: 5192
- 11l Zwick CR, Renata H. J. Org. Chem. 2018; 83: 7407
- 11m Zwick CR, Renata H. J. Am. Chem. Soc. 2018; 140: 1165
- 11n Zhou ZX, Rao WH, Zeng MH, Liu YJ. Chem. Commun. 2018; 54: 14136
- 11o Zhan BB, Li Y, Xu JW, Nie XL, Fan J, Jin L, Shi BF. Angew. Chem. Int. Ed. 2018; 57: 5858
- 11p Yang Q, Yang S.-D. ACS Catal. 2017; 7: 5220
- 11q Liao G, Yin XS, Chen K, Zhang Q, Zhang SQ, Shi BF. Nat. Commun. 2016; 7: 12901
- 11r Bag R, Sharma NK. Org. Chem. Front. 2023; 10: 1252
- 11s Guin S, Deb A, Dolui P, Chakraborty S, Singh VK, Maiti D. ACS Catal. 2018; 8: 2664
- 12a Wu X, Gong LZ. Synthesis 2019; 51: 122
- 12b Wu Z, Zhang W. Chin. J. Org. Chem. 2017; 37: 2250
- 12c Bäckvall JE. In Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2014: 875
- 12d Xiong Y, Sun Y, Zhang G. Tetrahedron Lett. 2018; 59: 347
- 13 Wang P.-Z, Xiao W.-J, Chen J.-R. Chin. J. Catal. 2022; 43: 548
- 14a Wang GZ, Shang R, Cheng WM, Fu Y. J. Am. Chem. Soc. 2017; 139: 18307
- 14b Kurandina D, Parasram M, Gevorgyan V. Angew. Chem. Int. Ed. 2017; 56: 14212
- 14c Fredricks MA, Drees M, Köhler K. ChemCatChem 2010; 2: 1467
- 14d Parasram M, Chuentragool P, Sarkar D, Gevorgyan V. J. Am. Chem. Soc. 2016; 138: 6340
- 14e Chuentragool P, Kurandina D, Gevorgyan V. Angew. Chem. Int. Ed. 2019; 58: 11586
- 15a Shing Cheung KP, Kurandina D, Yata T, Gevorgyan V. J. Am. Chem. Soc. 2020; 142: 9932
- 15b Huang HM, Bellotti P, Pfluger PM, Schwarz JL, Heidrich B, Glorius F. J. Am. Chem. Soc. 2020; 142: 10173
- 15c Huang H.-M, Koy M, Serrano E, Pflüger PM, Schwarz JL, Glorius F. Nat. Catal. 2020; 3: 393
- 15d Jin W, Yu S. Org. Lett. 2021; 23: 6931
- 16 Ruan X.-Y, Zhang T, Li W.-A, Yin Y.-Z, Han Z.-Y, Gong L.-Z. Sci. China Chem. 2022; 65: 863
- 17a Guo W, Wang Q, Zhu J. Chem. Soc. Rev. 2021; 50: 7359
- 17b Chen H, Yu S. Org. Biomol. Chem. 2020; 18: 4519
- 17c Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2056
- 18 Guérinot A, Serra-Muns A, Gnamm C, Bensoussan C, Reymond S, Cossy J. Org. Lett. 2010; 12: 1808
- 19a Cheng W.-M, Shang R, Fu Y. Nat. Commun. 2018; 9: 5215
- 19b Kancherla R, Muralirajan K, Maity B, Zhu C, Krach PE, Cavallo L, Rueping M. Angew. Chem. Int. Ed. 2019; 58: 3412
- 20 CCDC 2247278 (3aj) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 21 Ugwu DI, Okoro UC, Ukoha PO, Okafor S, Ibezim A, Kumar NM. Eur. J. Med. Chem. 2017; 135: 349
- 22 Chen H, Guo L, Yu S. Org. Lett. 2018; 20: 6255