Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(22): 3851-3861
DOI: 10.1055/a-2122-3731
DOI: 10.1055/a-2122-3731
paper
Direct Organocatalytic Asymmetric para C–H Aminoalkylation of Aniline Derivatives Affording Diarylmethylamines
This work was supported by the Innovation Fund (2019A005), the NSFC (22071147 and 81872418), Shanghai Scientific and Technological Innovation Action Plan (21S11902000), and the Transforming Medicine Cross Research Fund of Shanghai Jiao Tong University (YG2022QN032).
![](https://www.thieme-connect.de/media/synthesis/202322/lookinside/thumbnails/ss-2023-b0201-op_10-1055_a-2122-3731-1.jpg)
Abstract
An efficient method to directly catalyze asymmetric para C–H aminoalkylation of aniline derivatives to prepare chiral diarylmethylamine system was developed. Aniline derivatives underwent an enantioselective aminoalkylation in the presence of chiral phosphoric acid, affording a series of optically active diarylmethylamine products in good yields and enantioselectivities (73% yield, 91% ee). Furthermore, this method could be used to prepare the key intermediate of chiral drug levocetirizine.
Key words
organic catalysis - aniline derivative - aminoalkylation - diarylmethylamine - asymmetric synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2122-3731.
- Supporting Information
Publication History
Received: 09 May 2023
Accepted after revision: 03 July 2023
Accepted Manuscript online:
04 July 2023
Article published online:
16 August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Hu LA, Zhang Y, Zhang QW, Yin Q, Zhang X. Angew. Chem. Int. Ed. 2020; 59: 5321
- 2 Curran MP, Scott LJ, Perry CM. Drugs 2004; 64: 523
- 3 Mouridsen H, Gershanovich M, Sun Y, Pérez-Carrión R, Boni C, Monnier A, Apffelstaedt J, Smith R, Sleeboom HP, Jaenicke F, Pluzanska A, Dank M, Becquart D, Bapsy PP, Salminen E, Snyder R, Chaudri-Ross H, Lang R, Wyld P, Bhatnagar A. J. Clin. Oncol. 2003; 21: 2101
- 4a Naito R, Yonetoku Y, Okamoto Y, Toyoshima A, Ikeda K, Takeuchi M. J. Med. Chem. 2005; 48: 6597
- 4b Huang Y, Wang L, Li J, Qiu H, Leung P.-H. ACS Omega 2020; 5: 15936
- 5 Kim Y, Kwon YI, Kim S.-G. Synthesis 2019; 52: 281
- 6 Hermanns N, Dahmen S, Bolm C, Bräse S. Angew. Chem. Int. Ed. 2002; 41: 3692
- 7a Hayashi T, Ishigedani M. J. Am. Chem. Soc. 2000; 122: 976
- 7b Oi S, Moro M, Kawanishi T, Inoue Y. Tetrahedron Lett. 2004; 45: 4855
- 8a Kuriyama M, Soeta T, Hao X, Chen Q, Tomioka K. J. Am. Chem. Soc. 2004; 126: 8128
- 8b Duan H.-F, Jia Y.-X, Wang L.-X, Zhou Q.-L. Org. Lett. 2006; 8: 2567
- 8c Jagt RB. C, Toullec PY, Geerdink D, de Vries JG, Feringa BL, Minnaard AJ. Angew. Chem. Int. Ed. 2006; 45: 2789
- 8d Shao C, Yu H.-J, Wu N.-Y, Feng C.-G, Lin G.-Q. Org. Lett. 2010; 12: 3820
- 8e Chen CC, Gopula B, Syu JF, Pan JH, Kuo TS, Wu PY, Henschke JP, Wu HL. J. Org. Chem. 2014; 79: 8077
- 8f Yasukawa T, Kuremoto T, Miyamura H, Kobayashi S. Org. Lett. 2016; 18: 2716
- 9a Tokunaga N, Otomaru Y, Okamoto K, Ueyama K, Shintani R, Hayashi T. J. Am. Chem. Soc. 2004; 126: 13584
- 9b Otomaru Y, Tokunaga N, Shintani R, Hayashi T. Org. Lett. 2005; 7: 307
- 9c Hao X, Kuriyama M, Chen Q, Yamamoto Y, Yamada K.-i, Tomioka K. Org. Lett. 2009; 11: 4470
- 9d Okamoto K, Hayashi T, Rawal VH. Chem. Commun. 2009; 4815
- 9e Jiang T, Chen WW, Xu MH. Org. Lett. 2017; 19: 2138
- 10a Ma G.-N, Zhang T, Shi M. Org. Lett. 2009; 11: 875
- 10b Dai H, Lu X. Tetrahedron Lett. 2009; 50: 3478
- 10c Yang Z, Ni Y, Liu R, Song K, Lin S, Pan Q. Tetrahedron Lett. 2017; 58: 2034
- 10d Song K, Wen M, Shen K, Fan C, Yang Z, Lin S, Pan Q. Tetrahedron Lett. 2021; 72: 153057
- 11a Nguyen TB, Bousserouel H, Wang Q, Guéritte F. Adv. Synth. Catal. 2011; 353: 257
- 11b Kong D, Li M, Zi G, Hou G, He Y. J. Org. Chem. 2016; 81: 6640
- 11c Abdine RA. A, Hedouin G, Colobert F, Wencel-Delord J. ACS Catal. 2021; 11: 215
- 12a Gathergood N, Zhuang W, Jørgensen KA. J. Am. Chem. Soc. 2000; 122: 12517
- 12b Paras NA, MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 7894
- 12c Jia S, Xing D, Zhang D, Hu W. Angew. Chem. Int. Ed. 2014; 53: 13098
- 12d Xu B, Li M.-L, Zuo X.-D, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2015; 137: 8700
- 12e Chen J, Zou L, Zeng C, Zhou Y, Fan B. Org. Lett. 2018; 20: 1283
- 12f Zhou J, Zhu GD, Wang L, Tan FX, Jiang W, Ma ZG, Kang JC, Hou SH, Zhang SY. Org. Lett. 2019; 21: 8662
- 12g Liu C, Tan FX, Zhou J, Bai HY, Ding TM, Zhu GD, Zhang SY. Org. Lett. 2020; 22: 2173
- 13a Ram S, Spicer LD. Synth. Commun. 1987; 17: 415
- 13b Doyle MP, Siegfried B, Dellaria JF. Jr. J. Org. Chem. 1977; 42: 2426
- 13c O’Brien PA, Osborne S, Parker D. J. Chem. Soc., Perkin Trans. 1 1998; 2519
For selected examples of asymmetric synthesis of chiral diarylmethylamines through imine addition, see:
For para C–H functionalization of aniline derivatives, see: