Subscribe to RSS
DOI: 10.1055/a-2123-9288
Palladium-Catalyzed Carbonylative Homocoupling of 2-Iodophenols for the Synthesis of Symmetrical Xanthones
The authors thank the Department of Atomic Energy-Board of Research in Nuclear Sciences (DAE-BRNS), Govt. of India (Sanction No. 37(2)/14/32/2018-BRNS/37238). M. S. L. is grateful to DAE-BRNS, Govt. of India for providing a Senior Research Fellowship (SRF) and research funds for this work.
Abstract
Herein, we report the palladium-catalyzed carbonylative synthesis of symmetrical xanthones from functionalized 2-iodophenols in a one-pot manner. The protocol involves homocoupling of 2-iodophenols using Pd catalyst, Cs2CO3 as base, with gaseous CO as C1 building block. The simple, ligand- and additive-free strategy provides moderate to good yields of symmetrical xanthones. The reaction was also examined with the combination of 2-hydroxyphenyl boronic acid as another coupling partner. Additionally, this protocol was extended for the synthesis of aryl and alkyl salicylate derivatives by varying the reaction conditions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2123-9288.
- Supporting Information
Publication History
Received: 18 May 2023
Accepted after revision: 05 July 2023
Accepted Manuscript online:
05 July 2023
Article published online:
04 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Peres V, Nagem TJ, de Oliveira FF. Phytochemistry 2000; 55: 683
- 1b Luo F, Lv Q, Zhao Y, Hu G, Huang G, Zhang J, Sun C, Li X, Chen K. Int. J. Mol. Sci. 2012; 13: 11260
- 1c Masters K.-S, Bräse S. Chem. Rev. 2012; 112: 3717
- 1d Lin S, Koh J.-J, Aung TT, Lim F, Li J, Zou H, Wang L, Lakshminarayanan R, Verma C, Wang Y, Tan DT. H, Cao D, Beuerman RW, Ren L, Liu S. J. Med. Chem. 2017; 60: 1362
- 2a Salman Z, Jian Y.-Q, Li B, Peng C.-Y, Iqbal CM, Atta-ur-Rahman, Wang W. Digital Chin. Med. 2019; 2: 166
- 2b Pinto MM. M, Sousa ME, Nascimento MS. J. Curr. Med. Chem. 2005; 12: 2517
- 2c Du X.-G, Wang W, Zhang S.-P, Pu X.-P, Zhang Q.-Y, Ye M, Zhao Y.-Y, Wang B.-R, Khan IA, Guo D.-A. J. Nat. Prod. 2010; 73: 1422
- 2d Santos Á, Soares JX, Cravo S, Tiritan ME, Reis S, Afonso C, Fernandes C, Pinto MM. M. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2018; 1072: 182
- 2e Vieira LM. M, Kijjoa A. Curr. Med. Chem. 2005; 12: 2413
- 3a Azuma E, Kuramochi K, Tsubaki K. Tetrahedron 2013; 69: 1694
- 3b Shieh P, Hangauer MJ, Bertozzi CR. J. Am. Chem. Soc. 2012; 134: 17428
- 4 Correia-da-Silva M, Sousa E, Duarte B, Marques F, Carvalho F, Cunha-Ribeiro LM, Pinto MM. M. J. Med. Chem. 2011; 54: 5373
- 5 Azevedo C, Afonso C, Pinto M. Curr. Org. Chem. 2012; 16: 2818
- 6a Portela C, Afonso CM. M, Pinto MM. M, Lopes D, Nogueira F, do Rosário V. Chem. Biodivers. 2007; 4: 1508
- 6b Pinto M, Castanheiro R. Curr. Org. Chem. 2009; 13: 1215
- 6c Afzal M, Al-Hassan M. J. Heterocycles 1980; 14: 1173
- 6d Gobbi S, Rampa A, Bisi A, Belluti F, Valenti P, Caputo A, Zampiron A, Carrara M. J. Med. Chem. 2002; 45: 4931
- 6e Sousa ME, Pinto MM. M. Curr. Med. Chem. 2005; 12: 2447
- 7a Wang P, Rao H, Hua R, Li C.-J. Org. Lett. 2012; 14: 902
- 7b Wertz S, Leifert D, Studer A. Org. Lett. 2013; 15: 928
- 8 Rao ML. N, Ramakrishna BS. RSC Adv. 2016; 6: 75505
- 9a Loureiro DR. P, Soares JX, Maia A, Silva AM. N, Rangel M, Azevedo CM. G, Hansen SV, Ulven T, Pinto MM. M, Reis S, Afonso CM. M. ChemistrySelect 2021; 6: 4511
- 9b Shen C, Wu X.-F. Synlett 2016; 27: 1269
- 9c Venkanna A, Goud PV. K, Prasad PV, Shanker M, Rao PV. ChemistrySelect 2016; 1: 2271
- 9d Menéndez CA, Nador F, Radivoy G, Gerbino DC. Org. Lett. 2014; 16: 2846
- 9e Steingruber HS, Mendioroz P, Diez AS, Gerbino DC. Synthesis 2020; 52: 619
- 10 Heck RF. J. Am. Chem. Soc. 1968; 90: 5546
- 11a Watson DA, Fan X, Buchwald SL. J. Org. Chem. 2008; 73: 7096
- 11b Etemadi-Davan E, Iranpoor N. ChemistrySelect 2016; 1: 4300
- 11c Gaikwad VV, Saptal VB, Harada K, Sasaki T, Nishio-Hamane D, Bhanage BM. ChemNanoMat 2018; 4: 575
- 11d Lokolkar MS, Pal MK, Dey S, Bhanage BM. Catal. Lett. 2023; 153: 2359
- 11e Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
- 11f Urbán B, Papp M, Skoda-Földes R. Curr. Green Chem. 2019; 6: 78
- 11g Gautam P, Bhanage BM. Catal. Sci. Technol. 2015; 5: 4663
- 12 Zhang H, Shi R, Gan P, Liu C, Ding A, Wang Q, Lei A. Angew. Chem. Int. Ed. 2012; 51: 5204
- 13a Xu Y, Zhou J, Zhang C, Chen K, Zhang T, Du Z. Tetrahedron Lett. 2014; 55: 6432
- 13b Ma R.-Y, Chen Y.-F, Wang J.-R, Du Z.-T. J. Chin. Chem. Soc. 2018; 65: 28
- 14a Resende DI. S. P, Durães F, Maia M, Sousa E, Pinto MM. M. Org. Chem. Front. 2020; 7: 3027
- 14b Nale SD, Maiti D, Lee YR. Org. Lett. 2021; 23: 2465
- 14c Anna, Chen Z, Qiao H, Gao J, Zhu M, Li C. Catal. Commun. 2021; 161: 106360
- 14d Shi Z, Chen S, Xiao Q, Yin D. J. Org. Chem. 2021; 86: 3334
- 14e Rao H, Ma X, Liu Q, Li Z, Cao S, Li C.-J. Adv. Synth. Catal. 2013; 355: 2191
- 14f Tang J, Zhao S, Wei Y, Quan Z, Huo C. Org. Biomol. Chem. 2017; 15: 1589
- 15a Mane RS, Bhanage BM. Adv. Synth. Catal. 2017; 359: 2621
- 15b Gautam P, Kathe P, Bhanage BM. Green Chem. 2017; 19: 823
- 16 Tiwari AR, Bhanage BM. Org. Biomol. Chem. 2016; 14: 7920
- 17 Ai H.-J, Zhang Y, Zhao F, Wu X.-F. Org. Lett. 2020; 22: 6050
- 18 9H-Xanthen-9-one (2a); Typical Procedure: To a 100 mL stainless-steel reactor, 2-iodophenol (0.5 mmol), catalyst (5 mol%), base (2.5 equiv), and solvent (10 mL) were added. The autoclave was closed tightly and then pressurized with 3 atm of CO at room temperature ( Caution! CO gas is toxic and should be handled with care), then heated at 100 °C, and the reaction mixture was stirred with a mechanical stirrer for 16 h. After the reaction, the reactor was cooled to room temperature and the residual CO pressure was vented carefully. The reaction mixture was extracted with ethyl acetate and washed with saturated aqueous NaCl solution. The combined organic layer was dried over sodium sulfate and concentrated with a rotary evaporator. The residue obtained was purified by column chromatography (ethyl acetate/petroleum ether) and the obtained products were analyzed by GCMS and by 1H and 13C NMR spectroscopic techniques. 1H NMR (400 MHz, CDCl3): δ = 8.33 (dd, J = 8.0, 1.5 Hz, 2 H), 7.71 (ddd, J = 8.7, 7.2, 1.7 Hz, 2 H), 7.48 (d, J = 8.4 Hz, 2 H), 7.39–7.33 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 177.18, 156.15, 134.76, 126.70, 123.86, 121.83, 117.93.