Subscribe to RSS
DOI: 10.1055/a-2128-5408
Electrochemical Dearomatizing Spirolactonization and Spiroetherification of Naphthols and Phenols
We acknowledge financial support from the Narodowe Centrum Nauki (National Science Centre, Poland; grant no. 2020/37/B/ST4/01162).

Abstract
An electrochemical oxidative ortho-dearomatization of naphthols and phenols with an intramolecular C–O bond formation has been developed. A careful optimization of the reaction parameters allowed for the application of free phenols as the starting materials, in contrast to the existing alternative procedures necessitating aryl methyl ether substrates. The reaction delivers an array of spirolactones and spiroethers in yields up to 97%, under simple experimental conditions: in a constant current mode, using an undivided cell, and without an inert atmosphere. The method avoids using catalysts or stoichiometric oxidants (e.g., hypervalent iodine reagents), generating hydrogen as the sole byproduct.
Key words
electrosynthesis - dearomatization - oxidation - spirolactonization - spiroetherification - naphthols - phenolsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2128-5408.
- Supporting Information
Publication History
Received: 23 June 2023
Accepted after revision: 13 July 2023
Accepted Manuscript online:
13 July 2023
Article published online:
05 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Wipf P, Kim Y, Fritch PC. J. Org. Chem. 1993; 58: 7195
- 1b Voss F, Schunk S, Steinhagen H. In Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation, 1st ed. Bräse S. The Royal Society of Chemistry; Cambridge: 2016: 450
- 1c Quintavalla A. Curr. Med. Chem. 2018; 25: 917
- 1d Thorat SS, Kontham R. Org. Biomol. Chem. 2019; 17: 7270
- 2a Quideau S, Pouységu L, Deffieux D. Synlett 2008; 467
- 2b Roche SP, Porco JA. Angew. Chem. Int. Ed. 2011; 50: 4068
- 2c Bartoli A, Rodier F, Commeiras L, Parrain J.-L, Chouraqui G. Nat. Prod. Rep. 2011; 28: 763
- 2d Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
- 2e Ding Q, Ye Y, Fan R. Synthesis 2013; 45: 1
- 2f Sun W, Li G, Hong L, Wang R. Org. Biomol. Chem. 2016; 14: 2164
- 2g Wu W.-T, Zhang L, You S.-L. Chem. Soc. Rev. 2016; 45: 1570
- 2h Pantaine L, Moreau X, Coeffard V, Greck C. Tetrahedron Lett. 2016; 57: 2567
- 3 Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
- 4a Kotoku N, Tsujita H, Hiramatsu A, Mori C, Koizumi N, Kobayashi M. Tetrahedron 2005; 61: 7211
- 4b Oguma T, Katsuki T. Chem. Commun. 2014; 50: 5053
- 4c Sarkar D, Ghosh MK, Rout N. Org. Biomol. Chem. 2016; 14: 7883
- 4d Sarkar D, Rout N. Org. Lett. 2019; 21: 4132
- 4e Sarkar D, Kuila P, Sood D. Eur. J. Org. Chem. 2019; 5894
- 4f Sahoo SR, Sarkar D. Tetrahedron Lett. 2020; 61: 151646
- 5a Dohi T, Maruyama A, Takenaga N, Senami K, Minamitsuji Y, Fujioka H, Caemmerer SB, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 3787
- 5b Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 2175
- 5c Uyanik M, Yasui T, Ishihara K. Tetrahedron 2010; 66: 5841
- 5d Dohi T, Takenaga N, Nakae T, Toyoda Y, Yamasaki M, Shiro M, Fujioka H, Maruyama A, Kita Y. J. Am. Chem. Soc. 2013; 135: 4558
- 5e Volp KA, Harned AM. Chem. Commun. 2013; 49: 3001
- 5f Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2013; 52: 9215
- 5g Uyanik M, Sasakura N, Mizuno M, Ishihara K. ACS Catal. 2017; 7: 872
- 5h Dohi T, Sasa H, Miyazaki K, Fujitake M, Takenaga N, Kita Y. J. Org. Chem. 2017; 82: 11954
- 5i Ogasawara M, Sasa H, Hu H, Amano Y, Nakajima H, Takenaga N, Nakajima K, Kita Y, Takahashi T, Dohi T. Org. Lett. 2017; 19: 4102
- 5j Jain N, Xu S, Ciufolini MA. Chem. Eur. J. 2017; 23: 4542
- 5k Uyanik M, Yasui T, Ishihara K. J. Org. Chem. 2017; 82: 11946
- 6a Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
- 6b Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 6c Yoshida J.-i, Shimizu A, Hayashi R. Chem. Rev. 2018; 118: 4702
- 6d Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
- 6e Shatskiy A, Lundberg H, Kärkäs MD. ChemElectroChem 2019; 6: 4067
- 6f Meyer TH, Choi I, Tian C, Ackermann L. Chem 2020; 6: 2484
- 6g Pollok D, Waldvogel SR. Chem. Sci. 2020; 11: 12386
- 6h Zhu C, Ang NW. J, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
- 7a Yamamura S, Nishiyama S. Synlett 2002; 533
- 7b Quideau S, Pouysegu L, Deffieux D. Curr. Org. Chem. 2004; 8: 113
- 7c Yamamura S. In PATAI’S Chemistry of Functional Groups . Rappoport Z. John Wiley & Sons; Chichester: 2009: 1
- 7d Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
- 7e Röckl JL, Pollok D, Franke R, Waldvogel SR. Acc. Chem. Res. 2020; 53: 45
- 7f Medici F, Resta S, Puglisi A, Rossi S, Raimondi L, Benaglia M. Molecules 2021; 26: 6968
- 7g Fatykhov R, Khalymbadzha I, Chupakhin O. Adv. Synth. Catal. 2022; 364: 1052
- 8a Noda H, Niwa M, Yamamura S. Tetrahedron Lett. 1981; 22: 3247
- 8b Hutinec A, Ziogas A, El-Mobayed M, Rieker A. J. Chem. Soc., Perkin Trans. 1 1998; 2201
- 8c Mori K, Takahashi M, Yamamura S, Nishiyama S. Tetrahedron 2001; 57: 5527
- 9a Nilsson A, Ronlán A, Parker VD. Tetrahedron Lett. 1975; 16: 1107
- 9b Nilsson A, Palmquist U, Pettersson T, Ronlán A. J. Chem. Soc., Perkin Trans. 1 1978; 696
- 9c Shizuri Y, Nakamura K, Yamamura S, Ohba S, Yamashita H, Saito Y. Tetrahedron Lett. 1986; 27: 727
- 9d Yamamura S, Shizuri Y, Shigemori H, Okuno Y, Ohkubo M. Tetrahedron 1991; 47: 635
- 9e Rieker A, Beisswenger R, Regier K. Tetrahedron 1991; 47: 645
- 9f Quideau S, Pouysegu L, Deffieux D, Ozanne A, Gagnepain J, Fabre I, Oxoby M. ARKIVOC 2003; (vi): 106
- 9g Deffieux D, Fabre I, Titz A, Léger J.-M, Quideau S. J. Org. Chem. 2004; 69: 8731
- 10a Deffieux D, Fabre I, Courseille C, Quideau S. J. Org. Chem. 2002; 67: 4458
- 10b Zhang C, Bu F, Zeng C, Wang D, Lu L, Zhang H, Lei A. CCS Chem. 2022; 4: 1199
- 11 An initial version of this work was deposited as a preprint: Sarvi Beigbaghlou S, Yafele RS, Kalek M. ChemRxiv 2023; preprint
- 12 Drutu I, Njardarson JT, Wood JL. Org. Lett. 2002; 4: 493
- 13a Waldvogel SR, Mentizi S, Kirste A. Radicals in Synthesis III . In Topics in Current Chemistry, Vol. 320. Heinrich M, Gansäuer A. Springer; Berlin: 2011: 1
- 13b Lips S, Waldvogel SR. ChemElectroChem 2019; 6: 1649
- 14 Ishihara K, Uyanik M, Takeshi Y. EP 2684863 A1, 2014
- 15 Oleynik AS, Kuprina TS, Pevneva NY, Markov AF, Kandalintseva NV, Prosenko AE, Grigor’ev IA. Russ. Chem. Bull. 2007; 56: 1135
- 16 See the Supporting Information for details.
- 17 Uyanik M, Sahara N, Katade O, Ishihara K. Org. Lett. 2020; 22: 560
For examples of the few existing related electrochemical oxidative dearomatizations of phenols with an intermolecular addition of nucleophiles, see: