Subscribe to RSS
DOI: 10.1055/a-2128-5538
FXR Friend-ChIPs in the Enterohepatic System
Funding This work was supported by the National Institutes of Health (grants: ES007148, ES029258, DK122725, GM135258, AND GM093854), the Department of Veteran Affairs (BX002741), and the Momental Foundation Mistletoe Research Fellowship (FP00032129). The authors would like to thank Rulaiha Elizabeth Taylor, Zakiyah Henry, and Dr. Bo Kong for their support to this work and Dr. Saskia van Mil for her permission to reuse two figure panels of FXR binding motif sequences found in [Fig. 1].
Abstract
Chronic liver diseases encompass a wide spectrum of hepatic maladies that often result in cholestasis or altered bile acid secretion and regulation. Incidence and cost of care for many chronic liver diseases are rising in the United States with few Food and Drug Administration-approved drugs available for patient treatment. Farnesoid X receptor (FXR) is the master regulator of bile acid homeostasis with an important role in lipid and glucose metabolism and inflammation. FXR has served as an attractive target for management of cholestasis and fibrosis; however, global FXR agonism results in adverse effects in liver disease patients, severely affecting quality of life. In this review, we highlight seminal studies and recent updates on the FXR proteome and identify gaps in knowledge that are essential for tissue-specific FXR modulation. In conclusion, one of the greatest unmet needs in the field is understanding the underlying mechanism of intestinal versus hepatic FXR function.
Publication History
Accepted Manuscript online:
13 July 2023
Article published online:
11 August 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Hirode G, Saab S, Wong RJ. Trends in the burden of chronic liver disease among hospitalized US adults. JAMA Netw Open 2020; 3 (04) e201997
- 2 Abeysekera KWM, Macpherson I, Glyn-Owen K. et al. Community pathways for the early detection and risk stratification of chronic liver disease: a narrative systematic review. Lancet Gastroenterol Hepatol 2022; 7 (08) 770-780
- 3 Boyer JL. Bile formation and secretion. Compr Physiol 2013; 3 (03) 1035-1078
- 4 Anson ML. The denaturation of proteins by synthetic detergents and bile salts. J Gen Physiol 1939; 23 (02) 239-246
- 5 Hofmann AF. Micellar solubilization of fatty acids and monoglycerides by bile salt solutions. Nature 1961; 190: 1106-1107
- 6 Jones H, Alpini G, Francis H. Bile acid signaling and biliary functions. Acta Pharm Sin B 2015; 5 (02) 123-128
- 7 Chiang JY, Kimmel R, Weinberger C, Stroup D. Farnesoid X receptor responds to bile acids and represses cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription. J Biol Chem 2000; 275 (15) 10918-10924
- 8 Makishima M, Okamoto AY, Repa JJ. et al. Identification of a nuclear receptor for bile acids. Science 1999; 284 (5418): 1362-1365
- 9 Parks DJ, Blanchard SG, Bledsoe RK. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284 (5418): 1365-1368
- 10 Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999; 3 (05) 543-553
- 11 Forman BM, Goode E, Chen J. et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995; 81 (05) 687-693
- 12 Seol W, Choi HS, Moore DD. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol Endocrinol 1995; 9 (01) 72-85
- 13 Inagaki T, Choi M, Moschetta A. et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005; 2 (04) 217-225
- 14 Kong B, Wang L, Chiang JY, Zhang Y, Klaassen CD, Guo GL. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology 2012; 56 (03) 1034-1043
- 15 Ramos Pittol JM, Milona A, Morris I. et al. FXR isoforms control different metabolic functions in liver cells via binding to specific DNA motifs. Gastroenterology 2020; 159 (05) 1853.e10-1865.e10
- 16 Huber RM, Murphy K, Miao B. et al. Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene 2002; 290 (1–2): 35-43
- 17 Zhang Y, Kast-Woelbern HR, Edwards PA. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J Biol Chem 2003; 278 (01) 104-110
- 18 Boesjes M, Bloks VW, Hageman J. et al. Hepatic farnesoid X-receptor isoforms α2 and α4 differentially modulate bile salt and lipoprotein metabolism in mice. PLoS One 2014; 9 (12) e115028
- 19 Chen F, Ma L, Dawson PA. et al. Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter. J Biol Chem 2003; 278 (22) 19909-19916
- 20 Dawson PA, Haywood J, Craddock AL. et al. Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem 2003; 278 (36) 33920-33927
- 21 Grober J, Zaghini I, Fujii H. et al. Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer. J Biol Chem 1999; 274 (42) 29749-29754
- 22 Gadaleta RM, van Erpecum KJ, Oldenburg B. et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 2011; 60 (04) 463-472
- 23 Ijssennagger N, van Rooijen KS, Magnúsdóttir S. et al. Ablation of liver Fxr results in an increased colonic mucus barrier in mice. JHEP Rep 2021; 3 (05) 100344
- 24 Jiang C, Xie C, Li F. et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest 2015; 125 (01) 386-402
- 25 Jiang C, Xie C, Lv Y. et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun 2015; 6: 10166
- 26 Guzior DV, Quinn RA. Review: microbial transformations of human bile acids. Microbiome 2021; 9 (01) 140
- 27 Zhang Y, Gao X, Gao S. et al. Effect of gut flora mediated-bile acid metabolism on intestinal immune microenvironment. Immunology 2023;
- 28 Song KH, Li T, Owsley E, Strom S, Chiang JY. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology 2009; 49 (01) 297-305
- 29 Kim I, Ahn SH, Inagaki T. et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 2007; 48 (12) 2664-2672
- 30 Goodwin B, Jones SA, Price RR. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 2000; 6 (03) 517-526
- 31 Lu TT, Makishima M, Repa JJ. et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 2000; 6 (03) 507-515
- 32 Miao J, Choi SE, Seok SM. et al. Ligand-dependent regulation of the activity of the orphan nuclear receptor, small heterodimer partner (SHP), in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes. Mol Endocrinol 2011; 25 (07) 1159-1169
- 33 Rizzo G, Renga B, Mencarelli A, Pellicciari R, Fiorucci S. Role of FXR in regulating bile acid homeostasis and relevance for human diseases. Curr Drug Targets Immune Endocr Metabol Disord 2005; 5 (03) 289-303
- 34 Clifford BL, Sedgeman LR, Williams KJ. et al. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab 2021; 33 (08) 1671.e4-1684.e4
- 35 Watanabe M, Houten SM, Wang L. et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 2004; 113 (10) 1408-1418
- 36 Gai Z, Visentin M, Gui T. et al. Effects of farnesoid X receptor activation on arachidonic acid metabolism, NF-kB signaling, and hepatic inflammation. Mol Pharmacol 2018; 94 (02) 802-811
- 37 Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 2008; 48 (05) 1632-1643
- 38 Xu Z, Huang G, Gong W. et al. FXR ligands protect against hepatocellular inflammation via SOCS3 induction. Cell Signal 2012; 24 (08) 1658-1664
- 39 Li T, Matozel M, Boehme S. et al. Overexpression of cholesterol 7α-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis. Hepatology 2011; 53 (03) 996-1006
- 40 Pandak WM, Bohdan P, Franklund C. et al. Expression of sterol 12alpha-hydroxylase alters bile acid pool composition in primary rat hepatocytes and in vivo. Gastroenterology 2001; 120 (07) 1801-1809
- 41 de Boer JF, Verkade E, Mulder NL. et al. A human-like bile acid pool induced by deletion of hepatic Cyp2c70 modulates effects of FXR activation in mice. J Lipid Res 2020; 61 (03) 291-305
- 42 Li J, Dawson PA. Animal models to study bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2019; 1865 (05) 895-911
- 43 de Boer JF, de Vries HD, Palmiotti A. et al. Cholangiopathy and biliary fibrosis in Cyp2c70-deficient mice are fully reversed by ursodeoxycholic acid. Cell Mol Gastroenterol Hepatol 2021; 11 (04) 1045-1069
- 44 Murray A, Banota T, Guo GL. et al. Farnesoid X receptor regulates lung macrophage activation and injury following nitrogen mustard exposure. Toxicol Appl Pharmacol 2022; 454: 116208
- 45 Guo GL, Santamarina-Fojo S, Akiyama TE. et al. Effects of FXR in foam-cell formation and atherosclerosis development. Biochim Biophys Acta 2006; 1761 (12) 1401-1409
- 46 Yan N, Yan T, Xia Y, Hao H, Wang G, Gonzalez FJ. The pathophysiological function of non-gastrointestinal farnesoid X receptor. Pharmacol Ther 2021; 226: 107867
- 47 Guo Y, Xie G, Zhang X. Role of FXR in renal physiology and kidney diseases. Int J Mol Sci 2023; 24 (03) 24
- 48 Yang J, de Vries HD, Mayeuf-Louchart A. et al. Role of bile acid receptor FXR in development and function of brown adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868 (02) 159257
- 49 Ding L, Yang L, Wang Z, Huang W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm Sin B 2015; 5 (02) 135-144
- 50 Fu T, Li Y, Oh TG. et al. FXR mediates ILC-intrinsic responses to intestinal inflammation. Proc Natl Acad Sci U S A 2022; 119 (51) e2213041119
- 51 Zhao Q, Dai MY, Huang RY. et al. Parabacteroides distasonis ameliorates hepatic fibrosis potentially via modulating intestinal bile acid metabolism and hepatocyte pyroptosis in male mice. Nat Commun 2023; 14 (01) 1829
- 52 Downes M, Verdecia MA, Roecker AJ. et al. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell 2003; 11 (04) 1079-1092
- 53 Fang S, Suh JM, Reilly SM. et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 2015; 21 (02) 159-165
- 54 Fickert P, Fuchsbichler A, Moustafa T. et al. Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts. Am J Pathol 2009; 175 (06) 2392-2405
- 55 Fan YY, Ding W, Zhang C, Fu L, Xu DX, Chen X. Obeticholic acid prevents carbon tetrachloride-induced liver fibrosis through interaction between farnesoid X receptor and Smad3. Int Immunopharmacol 2019; 77: 105911
- 56 Zhou J, Huang N, Guo Y. et al. Combined obeticholic acid and apoptosis inhibitor treatment alleviates liver fibrosis. Acta Pharm Sin B 2019; 9 (03) 526-536
- 57 Verbeke L, Mannaerts I, Schierwagen R. et al. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci Rep 2016; 6: 33453
- 58 Meadows V, Kennedy L, Ekser B. et al. Mast cells regulate ductular reaction and intestinal inflammation in cholestasis through farnesoid X receptor signaling. Hepatology 2021; 74 (05) 2684-2698
- 59 Kjærgaard K, Frisch K, Sørensen M. et al. Obeticholic acid improves hepatic bile acid excretion in patients with primary biliary cholangitis. J Hepatol 2021; 74 (01) 58-65
- 60 Mudaliar S, Henry RR, Sanyal AJ. et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 2013; 145 (03) 574.e1-82.e1
- 61 Eloranta JJ, Kullak-Ublick GA. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 2005; 433 (02) 397-412
- 62 Nettles KW, Greene GL. Nuclear receptor ligands and cofactor recruitment: is there a coactivator “on deck”?. Mol Cell 2003; 11 (04) 850-851
- 63 Henry Z, Meadows V, Guo GL. FXR and NASH: an avenue for tissue-specific regulation. Hepatol Commun 2023; 7 (05) 7
- 64 Claudel T, Sturm E, Duez H. et al. Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest 2002; 109 (07) 961-971
- 65 Zheng W, Lu Y, Tian S. et al. Structural insights into the heterodimeric complex of the nuclear receptors FXR and RXR. J Biol Chem 2018; 293 (32) 12535-12541
- 66 Kemper JK, Xiao Z, Ponugoti B. et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab 2009; 10 (05) 392-404
- 67 Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell 1995; 83 (06) 841-850
- 68 Wagner CE, Jurutka PW, Marshall PA, Heck MC. Retinoid X receptor selective agonists and their synthetic methods. Curr Top Med Chem 2017; 17 (06) 742-767
- 69 Shulman AI, Larson C, Mangelsdorf DJ, Ranganathan R. Structural determinants of allosteric ligand activation in RXR heterodimers. Cell 2004; 116 (03) 417-429
- 70 Hoeke MO, Heegsma J, Hoekstra M, Moshage H, Faber KN. Human FXR regulates SHP expression through direct binding to an LRH-1 binding site, independent of an IR-1 and LRH-1. PLoS One 2014; 9 (02) e88011
- 71 Laffitte BA, Kast HR, Nguyen CM, Zavacki AM, Moore DD, Edwards PA. Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J Biol Chem 2000; 275 (14) 10638-10647
- 72 Jiang L, Liu X, Liang X. et al. Structural basis of the farnesoid X receptor/retinoid X receptor heterodimer on inverted repeat DNA. Comput Struct Biotechnol J 2023; 21: 3149-3157
- 73 Thakur A, Wong JCH, Wang EY. et al. Hepatocyte nuclear factor 4-alpha is essential for the active epigenetic state at enhancers in mouse liver. Hepatology 2019; 70 (04) 1360-1376
- 74 Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 2006; 126 (04) 789-799
- 75 Yamagata K, Furuta H, Oda N. et al. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 1996; 384 (6608): 458-460
- 76 Yeh MM, Bosch DE, Daoud SS. Role of hepatocyte nuclear factor 4-alpha in gastrointestinal and liver diseases. World J Gastroenterol 2019; 25 (30) 4074-4091
- 77 Thomas AM, Hart SN, Li G. et al. Hepatocyte nuclear factor 4 alpha and farnesoid X receptor co-regulates gene transcription in mouse livers on a genome-wide scale. Pharm Res 2013; 30 (09) 2188-2198
- 78 Inoue Y, Yu AM, Inoue J, Gonzalez FJ. Hepatocyte nuclear factor 4alpha is a central regulator of bile acid conjugation. J Biol Chem 2004; 279 (04) 2480-2489
- 79 Caron S, Huaman Samanez C, Dehondt H. et al. Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes. Mol Cell Biol 2013; 33 (11) 2202-2211
- 80 Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA. Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev 2004; 18 (02) 157-169
- 81 Wang S, Yuan X, Lu D, Guo L, Wu B. Farnesoid X receptor regulates SULT1E1 expression through inhibition of PGC1α binding to HNF4α. Biochem Pharmacol 2017; 145: 202-209
- 82 Kir S, Zhang Y, Gerard RD, Kliewer SA, Mangelsdorf DJ. Nuclear receptors HNF4α and LRH-1 cooperate in regulating Cyp7a1 in vivo. J Biol Chem 2012; 287 (49) 41334-41341
- 83 Li T, Jahan A, Chiang JY. Bile acids and cytokines inhibit the human cholesterol 7 alpha-hydroxylase gene via the JNK/c-jun pathway in human liver cells. Hepatology 2006; 43 (06) 1202-1210
- 84 Gupta S, Stravitz RT, Dent P, Hylemon PB. Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem 2001; 276 (19) 15816-15822
- 85 Wang Y, Matye D, Nguyen N, Zhang Y, Li T. HNF4α regulates CSAD to couple hepatic taurine production to bile acid synthesis in mice. Gene Expr 2018; 18 (03) 187-196
- 86 Halpern KB, Shenhav R, Matcovitch-Natan O. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 2017; 542 (7641): 352-356
- 87 Appelman MD, van der Veen SW, van Mil SWC. Post-translational modifications of FXR; implications for cholestasis and obesity-related disorders. Front Endocrinol (Lausanne) 2021; 12: 729828
- 88 Rizzo G, Renga B, Antonelli E, Passeri D, Pellicciari R, Fiorucci S. The methyl transferase PRMT1 functions as co-activator of farnesoid X receptor (FXR)/9-cis retinoid X receptor and regulates transcription of FXR responsive genes. Mol Pharmacol 2005; 68 (02) 551-558
- 89 Fang S, Tsang S, Jones R. et al. The p300 acetylase is critical for ligand-activated farnesoid X receptor (FXR) induction of SHP. J Biol Chem 2008; 283 (50) 35086-35095
- 90 Rahman S, Islam R. Mammalian Sirt1: insights on its biological functions. Cell Commun Signal 2011; 9: 11
- 91 Bouras T, Fu M, Sauve AA. et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem 2005; 280 (11) 10264-10276
- 92 Walsh CA, Qin L, Tien JC, Young LS, Xu J. The function of steroid receptor coactivator-1 in normal tissues and cancer. Int J Biol Sci 2012; 8 (04) 470-485
- 93 Berrabah W, Aumercier P, Gheeraert C. et al. Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR). Hepatology 2014; 59 (05) 2022-2033
- 94 Cabrerizo R, Castaño GO, Burgueño AL. et al. Promoter DNA methylation of farnesoid X receptor and pregnane X receptor modulates the intrahepatic cholestasis of pregnancy phenotype. PLoS One 2014; 9 (01) e87697
- 95 Byun S, Kim DH, Ryerson D. et al. Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis. Nat Commun 2018; 9 (01) 2590
- 96 Kazgan N, Metukuri MR, Purushotham A. et al. Intestine-specific deletion of SIRT1 in mice impairs DCoH2-HNF-1α-FXR signaling and alters systemic bile acid homeostasis. Gastroenterology 2014; 146 (04) 1006-1016
- 97 Zhou J, Cui S, He Q. et al. SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis. Nat Commun 2020; 11 (01) 240
- 98 Balasubramaniyan N, Luo Y, Sun AQ, Suchy FJ. SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes. J Biol Chem 2013; 288 (19) 13850-13862
- 99 Martínez-Jiménez CP, Gómez-Lechón MJ, Castell JV, Jover R. Underexpressed coactivators PGC1alpha and SRC1 impair hepatocyte nuclear factor 4 alpha function and promote dedifferentiation in human hepatoma cells. J Biol Chem 2006; 281 (40) 29840-29849
- 100 Wang N, Zou Q, Xu J, Zhang J, Liu J. Ligand binding and heterodimerization with retinoid X receptor α (RXRα) induce farnesoid X receptor (FXR) conformational changes affecting coactivator binding. J Biol Chem 2018; 293 (47) 18180-18191
- 101 Benhamed F, Filhoulaud G, Caron S, Lefebvre P, Staels B, Postic C. O-GlcNAcylation links ChREBP and FXR to glucose-sensing. Front Endocrinol (Lausanne) 2015; 5: 230
- 102 Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin. EMBO J 2012; 31 (12) 2714-2736
- 103 Goel C, Monga SP, Nejak-Bowen K. Role and regulation of Wnt/β-catenin in hepatic perivenous zonation and physiological homeostasis. Am J Pathol 2022; 192 (01) 4-17
- 104 Ayers M, Liu S, Singhi AD, Kosar K, Cornuet P, Nejak-Bowen K. Changes in beta-catenin expression and activation during progression of primary sclerosing cholangitis predict disease recurrence. Sci Rep 2022; 12 (01) 206
- 105 Zhang S, Zhang J, Evert K. et al. The hippo effector transcriptional coactivator with PDZ-binding motif cooperates with oncogenic β-catenin to induce hepatoblastoma development in mice and humans. Am J Pathol 2020; 190 (07) 1397-1413
- 106 Zummo FP, Berthier A, Gheeraert C. et al. A time- and space-resolved nuclear receptor atlas in mouse liver. J Mol Endocrinol 2023; 71 (01) 71
- 107 Kim I, Morimura K, Shah Y, Yang Q, Ward JM, Gonzalez FJ. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis 2007; 28 (05) 940-946
- 108 Wolfe A, Thomas A, Edwards G, Jaseja R, Guo GL, Apte U. Increased activation of the Wnt/β-catenin pathway in spontaneous hepatocellular carcinoma observed in farnesoid X receptor knockout mice. J Pharmacol Exp Ther 2011; 338 (01) 12-21
- 109 Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X. β-Catenin signaling in hepatocellular carcinoma. J Clin Invest 2022; 132 (04) 132
- 110 Liu X, Zhang X, Ji L, Gu J, Zhou M, Chen S. Farnesoid X receptor associates with β-catenin and inhibits its activity in hepatocellular carcinoma. Oncotarget 2015; 6 (06) 4226-4238
- 111 Thompson MD, Moghe A, Cornuet P. et al. β-Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis. Hepatology 2018; 67 (03) 955-971
- 112 Liu J, Liu J, Meng C. et al. NRF2 and FXR dual signaling pathways cooperatively regulate the effects of oleanolic acid on cholestatic liver injury. Phytomedicine 2023; 108: 154529
- 113 Zhang R, Nakao T, Luo J. et al. Activation of WNT/beta-catenin signaling and regulation of the farnesoid X receptor/beta-catenin complex after murine bile duct ligation. Hepatol Commun 2019; 3 (12) 1642-1655
- 114 Liang N, Damdimopoulos A, Goñi S. et al. Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARα. Nat Commun 2019; 10 (01) 1684
- 115 Huang Z, Liang N, Goñi S. et al. The corepressors GPS2 and SMRT control enhancer and silencer remodeling via eRNA transcription during inflammatory activation of macrophages. Mol Cell 2021; 81 (05) 953.e9-968.e9
- 116 Fan R, Toubal A, Goñi S. et al. Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes. Nat Med 2016; 22 (07) 780-791
- 117 Xu G, Xin X, Zheng C. GPS2 is required for the association of NS5A with VAP-A and hepatitis C virus replication. PLoS One 2013; 8 (11) e78195
- 118 Sanyal S, Båvner A, Haroniti A. et al. Involvement of corepressor complex subunit GPS2 in transcriptional pathways governing human bile acid biosynthesis. Proc Natl Acad Sci U S A 2007; 104 (40) 15665-15670
- 119 Petta I, Dejager L, Ballegeer M. et al. The interactome of the glucocorticoid receptor and its influence on the actions of glucocorticoids in combatting inflammatory and infectious diseases. Microbiol Mol Biol Rev 2016; 80 (02) 495-522
- 120 Lu Y, Zhang Z, Xiong X. et al. Glucocorticoids promote hepatic cholestasis in mice by inhibiting the transcriptional activity of the farnesoid X receptor. Gastroenterology 2012; 143 (06) 1630-1640.e8
- 121 Al-Aqil FA, Monte MJ, Peleteiro-Vigil A. et al. Interaction of glucocorticoids with FXR/FGF19/FGF21-mediated ileum-liver crosstalk. Biochim Biophys Acta Mol Basis Dis 2018; 1864 (9, Pt B): 2927-2937
- 122 Hoekstra M, van der Sluis RJ, Li Z, Oosterveer MH, Groen AK, Van Berkel TJ. FXR agonist GW4064 increases plasma glucocorticoid levels in C57BL/6 mice. Mol Cell Endocrinol 2012; 362 (1–2): 69-75
- 123 Younossi ZM, Ratziu V, Loomba R. et al; REGENERATE Study Investigators. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2019; 394 (10215): 2184-2196
- 124 Nevens F, Andreone P, Mazzella G. et al; POISE Study Group. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med 2016; 375 (07) 631-643
- 125 Xu J, Wang Y, Khoshdeli M. et al. IL-31 levels correlate with pruritus in patients with cholestatic and metabolic liver diseases and is farnesoid X receptor responsive in NASH. Hepatology 2023; 77 (01) 20-32
- 126 Zhong XC, Liu YM, Gao XX. et al. Caffeic acid phenethyl ester suppresses intestinal FXR signaling and ameliorates nonalcoholic fatty liver disease by inhibiting bacterial bile salt hydrolase activity. Acta Pharmacol Sin 2023; 44 (01) 145-156
- 127 Dubois-Chevalier J, Dubois V, Dehondt H. et al. The logic of transcriptional regulator recruitment architecture at cis-regulatory modules controlling liver functions. Genome Res 2017; 27 (06) 985-996
- 128 Lee J, Seok S, Yu P. et al. Genomic analysis of hepatic farnesoid X receptor binding sites reveals altered binding in obesity and direct gene repression by farnesoid X receptor in mice. Hepatology 2012; 56 (01) 108-117
- 129 Thomas AM, Hart SN, Kong B, Fang J, Zhong XB, Guo GL. Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine. Hepatology 2010; 51 (04) 1410-1419
- 130 Chong HK, Infante AM, Seo YK. et al. Genome-wide interrogation of hepatic FXR reveals an asymmetric IR-1 motif and synergy with LRH-1. Nucleic Acids Res 2010; 38 (18) 6007-6017
- 131 Jungwirth E, Panzitt K, Marschall HU, Wagner M, Thallinger GG. A comprehensive FXR signaling atlas derived from pooled ChIP-seq data. Stud Health Technol Inform 2019; 260: 105-112