Semin Liver Dis 2023; 43(03): 245-257
DOI: 10.1055/a-2128-5907
Review Article

Angiocrine Signaling in Sinusoidal Health and Disease

Shawna A. Cooper
1   Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
,
Enis Kostallari
2   Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
,
Vijay H. Shah
2   Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
› Institutsangaben
Funding This paper received funding from the American Association for the Study of Liver Diseases Pinnacle Award, Gilead Scholar award to E.K.; NIDDK-supported 5T32DK124190 to S.A.C.; and P30DK084567 to the Mayo Clinic Center for Cell Signaling in Gastroenterology.


Abstract

Liver sinusoidal endothelial cells (LSECs) are key players in maintaining hepatic homeostasis. They also play crucial roles during liver injury by communicating with liver cell types as well as immune cells and promoting portal hypertension, fibrosis, and inflammation. Cutting-edge technology, such as single cell and spatial transcriptomics, have revealed the existence of distinct LSEC subpopulations with a clear zonation in the liver. The signals released by LSECs are commonly called “angiocrine signaling.” In this review, we summarize the role of angiocrine signaling in health and disease, including zonation in healthy liver, regeneration, fibrosis, portal hypertension, nonalcoholic fatty liver disease, alcohol-associated liver disease, aging, drug-induced liver injury, and ischemia/reperfusion, as well as potential therapeutic advances. In conclusion, sinusoidal endotheliopathy is recognized in liver disease and promising preclinical studies are paving the path toward LSEC-specific pharmacotherapies.



Publikationsverlauf

Accepted Manuscript online:
13. Juli 2023

Artikel online veröffentlicht:
11. August 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 DeLeve LD. Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology 2015; 61 (05) 1740-1746
  • 2 Grisham JW, Nopanitaya W, Compagno J, Nägel AE. Scanning electron microscopy of normal rat liver: the surface structure of its cells and tissue components. Am J Anat 1975; 144 (03) 295-321
  • 3 Livni N, Behar A, Brautbar N. Ultrastructure of hepatocellular carcinoma in a cirrhotic liver. Isr J Med Sci 1977; 13 (06) 590-599
  • 4 Poisson J, Lemoinne S, Boulanger C. et al. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J Hepatol 2017; 66 (01) 212-227
  • 5 Kostallari E, Shah VH. Angiocrine signaling in the hepatic sinusoids in health and disease. Am J Physiol Gastrointest Liver Physiol 2016; 311 (02) G246-G251
  • 6 McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 2023; 78 (02) 649-669
  • 7 Wisse E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res 1970; 31 (01) 125-150
  • 8 Halpern KB, Shenhav R, Massalha H. et al. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat Biotechnol 2018; 36 (10) 962-970
  • 9 Ramachandran P, Matchett KP, Dobie R, Wilson-Kanamori JR, Henderson NC. Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. Nat Rev Gastroenterol Hepatol 2020; 17 (08) 457-472
  • 10 Inverso D, Shi J, Lee KH. et al. A spatial vascular transcriptomic, proteomic, and phosphoproteomic atlas unveils an angiocrine Tie-Wnt signaling axis in the liver. Dev Cell 2021; 56 (11) 1677-1693.e10
  • 11 Duan JL, Ruan B, Yan XC. et al. Endothelial Notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice. Hepatology 2018; 68 (02) 677-690
  • 12 Duan JL, Zhou ZY, Ruan B. et al. Notch-regulated c-Kit-positive liver sinusoidal endothelial cells contribute to liver zonation and regeneration. Cell Mol Gastroenterol Hepatol 2022; 13 (06) 1741-1756
  • 13 Baumann K. Endothelial cell diversity in the liver. Nat Rev Mol Cell Biol 2022; 23 (05) 305
  • 14 de Haan W, Øie C, Benkheil M. et al. Unraveling the transcriptional determinants of liver sinusoidal endothelial cell specialization. Am J Physiol Gastrointest Liver Physiol 2020; 318 (04) G803-G815
  • 15 Gómez-Salinero JM, Izzo F, Lin Y. et al. Specification of fetal liver endothelial progenitors to functional zonated adult sinusoids requires c-Maf induction. Cell Stem Cell 2022; 29 (04) 593-609.e7
  • 16 Koch PS, Lee KH, Goerdt S, Augustin HG. Angiodiversity and organotypic functions of sinusoidal endothelial cells. Angiogenesis 2021; 24 (02) 289-310
  • 17 Zhu S, Rao X, Qian Y. et al. Liver endothelial Heg regulates vascular/biliary network patterning and metabolic zonation via Wnt signaling. Cell Mol Gastroenterol Hepatol 2022; 13 (06) 1757-1783
  • 18 Koch PS, Sandorski K, Heil J. et al. Imbalanced activation of Wnt-/β-catenin-signaling in liver endothelium alters normal sinusoidal differentiation. Front Physiol 2021; 12: 722394
  • 19 Leibing T, Géraud C, Augustin I. et al. Angiocrine Wnt signaling controls liver growth and metabolic maturation in mice. Hepatology 2018; 68 (02) 707-722
  • 20 Manco R, Itzkovitz S. Liver zonation. J Hepatol 2021; 74 (02) 466-468
  • 21 Paris J, Henderson NC. Liver zonation, revisited. Hepatology 2022; 76 (04) 1219-1230
  • 22 Ribatti D. Liver angiocrine factors. Tissue Cell 2023; 81: 102027
  • 23 MacParland SA, Liu JC, Ma XZ. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun 2018; 9 (01) 4383
  • 24 Su T, Yang Y, Lai S. et al. Single-cell transcriptomics reveals zone-specific alterations of liver sinusoidal endothelial cells in cirrhosis. Cell Mol Gastroenterol Hepatol 2021; 11 (04) 1139-1161
  • 25 Song X, Shen Y, Lao Y. et al. CXCL9 regulates acetaminophen-induced liver injury via CXCR3. Exp Ther Med 2019; 18 (06) 4845-4851
  • 26 Bonnardel J, T'Jonck W, Gaublomme D. et al. Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity 2019; 51 (04) 638-654.e9
  • 27 Gainullina A, Mogilenko DA, Huang LH. et al; ImmGen Consortium. Network analysis of large-scale ImmGen and Tabula Muris datasets highlights metabolic diversity of tissue mononuclear phagocytes. Cell Rep 2023; 42 (02) 112046
  • 28 Guilliams M, Bonnardel J, Haest B. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 2022; 185 (02) 379-396.e38
  • 29 Guilliams M, Scott CL. Does niche competition determine the origin of tissue-resident macrophages?. Nat Rev Immunol 2017; 17 (07) 451-460
  • 30 Scott CL, Zheng F, De Baetselier P. et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun 2016; 7: 10321
  • 31 van de Laar L, Saelens W, De Prijck S. et al. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 2016; 44 (04) 755-768
  • 32 Guilliams M, Scott CL. Liver macrophages in health and disease. Immunity 2022; 55 (09) 1515-1529
  • 33 Andrews TS, Atif J, Liu JC. et al. Single-cell, single-nucleus, and spatial RNA sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity. Hepatol Commun 2022; 6 (04) 821-840
  • 34 Dobie R, Wilson-Kanamori JR, Henderson BEP. et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep 2019; 29 (07) 1832-1847.e8
  • 35 Kostallari E, Wei B, Sicard D. et al. Stiffness is associated with hepatic stellate cell heterogeneity during liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2022; 322 (02) G234-G246
  • 36 Ramachandran P, Dobie R, Wilson-Kanamori JR. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 2019; 575 (7783): 512-518
  • 37 Bellanti F, Vendemiale G. The aging liver: redox biology and liver regeneration. Antioxid Redox Signal 2021; 35 (10) 832-847
  • 38 Ben-Moshe S, Veg T, Manco R. et al. The spatiotemporal program of zonal liver regeneration following acute injury. Cell Stem Cell 2022; 29 (06) 973-989.e10
  • 39 Chen Y, Ding BS. Comprehensive review of the vascular niche in regulating organ regeneration and fibrosis. Stem Cells Transl Med 2022; 11 (11) 1135-1142
  • 40 Chen Y, Pu Q, Ma Y. et al. Aging reprograms the hematopoietic-vascular niche to impede regeneration and promote fibrosis. Cell Metab 2021; 33 (02) 395-410.e4
  • 41 Ding BS, Cao Z, Lis R. et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 2014; 505 (7481): 97-102
  • 42 Ding BS, Nolan DJ, Butler JM. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 2010; 468 (7321): 310-315
  • 43 Elchaninov A, Vishnyakova P, Menyailo E, Sukhikh G, Fatkhudinov T. An eye on Kupffer cells: development, phenotype and the macrophage niche. Int J Mol Sci 2022; 23 (17) 9868
  • 44 Große-Segerath L, Lammert E. Role of vasodilation in liver regeneration and health. Biol Chem 2021; 402 (09) 1009-1019
  • 45 Hu S, Liu S, Bian Y. et al. Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b. Cell Rep Med 2022; 3 (10) 100754
  • 46 Huebert RC, Shah VH. Sinusoidal endothelial cells direct traffic at the intersection of regeneration and fibrosis. Hepatology 2014; 60 (02) 754-756
  • 47 Kim A, Wu X, Allende DS, Nagy LE. Gene deconvolution reveals aberrant liver regeneration and immune cell infiltration in alcohol-associated hepatitis. Hepatology 2021; 74 (02) 987-1002
  • 48 Ma R, Martínez-Ramírez AS, Borders TL, Gao F, Sosa-Pineda B. Metabolic and non-metabolic liver zonation is established non-synchronously and requires sinusoidal Wnts. eLife 2020; 9: 9
  • 49 Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 2014; 14 (03) 181-194
  • 50 Ramasamy SK, Kusumbe AP, Adams RH. Regulation of tissue morphogenesis by endothelial cell-derived signals. Trends Cell Biol 2015; 25 (03) 148-157
  • 51 Shido K, Chavez D, Cao Z, Ko J, Rafii S, Ding BS. Platelets prime hematopoietic and vascular niche to drive angiocrine-mediated liver regeneration. Signal Transduct Target Ther 2017; 2: 16044
  • 52 Takakura N. Discovery of a vascular endothelial stem cell (VESC) population required for vascular regeneration and tissue maintenance. Circ J 2018; 83 (01) 12-17
  • 53 Xu F, Hua C, Tautenhahn HM, Dirsch O, Dahmen U. The role of autophagy for the regeneration of the aging liver. Int J Mol Sci 2020; 21 (10) 3606
  • 54 Zhang XJ, Olsavszky V, Yin Y. et al. Angiocrine hepatocyte growth factor signaling controls physiological organ and body size and dynamic hepatocyte proliferation to prevent liver damage during regeneration. Am J Pathol 2020; 190 (02) 358-371
  • 55 He J, Deng C, Krall L, Shan Z. ScRNA-seq and ST-seq in liver research. Cell Regen (Lond) 2023; 12 (01) 11
  • 56 Schoen JM, Wang HH, Minuk GY, Lautt WW. Shear stress-induced nitric oxide release triggers the liver regeneration cascade. Nitric Oxide 2001; 5 (05) 453-464
  • 57 Shah V, Haddad FG, Garcia-Cardena G. et al. Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest 1997; 100 (11) 2923-2930
  • 58 Vázquez-Chantada M, Ariz U, Varela-Rey M. et al. Evidence for LKB1/AMP-activated protein kinase/ endothelial nitric oxide synthase cascade regulated by hepatocyte growth factor, S-adenosylmethionine, and nitric oxide in hepatocyte proliferation. Hepatology 2009; 49 (02) 608-617
  • 59 Wan Y, Li X, Slevin E. et al. Endothelial dysfunction in pathological processes of chronic liver disease during aging. FASEB J 2022; 36 (01) e22125
  • 60 Kron P, Linecker M, Limani P. et al. Hypoxia-driven Hif2a coordinates mouse liver regeneration by coupling parenchymal growth to vascular expansion. Hepatology 2016; 64 (06) 2198-2209
  • 61 Braun L, Mead JE, Panzica M, Mikumo R, Bell GI, Fausto N. Transforming growth factor beta mRNA increases during liver regeneration: a possible paracrine mechanism of growth regulation. Proc Natl Acad Sci U S A 1988; 85 (05) 1539-1543
  • 62 Arab JP, Cabrera D, Sehrawat TS. et al. Hepatic stellate cell activation promotes alcohol-induced steatohepatitis through Igfbp3 and SerpinA12. J Hepatol 2020; 73 (01) 149-160
  • 63 Drinane MC, Yaqoob U, Yu H. et al. Synectin promotes fibrogenesis by regulating PDGFR isoforms through distinct mechanisms. JCI Insight 2017; 2 (24) e92821
  • 64 Gao J, Wei B, de Assuncao TM. et al. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol 2020; 73 (05) 1144-1154
  • 65 Kostallari E, Hirsova P, Prasnicka A. et al. Hepatic stellate cell-derived platelet-derived growth factor receptor-alpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology 2018; 68 (01) 333-348
  • 66 Maiers JL, Kostallari E, Mushref M. et al. The unfolded protein response mediates fibrogenesis and collagen I secretion through regulating TANGO1 in mice. Hepatology 2017; 65 (03) 983-998
  • 67 Yaqoob U, Luo F, Greuter T. et al. GIPC-regulated IGFBP-3 promotes HSC migration in vitro and portal hypertension in vivo through a β1-integrin pathway. Cell Mol Gastroenterol Hepatol 2020; 10 (03) 545-559
  • 68 Gao J, Wei B, Liu M. et al. Endothelial p300 promotes portal hypertension and hepatic fibrosis through C-C motif chemokine ligand 2-mediated angiocrine signaling. Hepatology 2021; 73 (06) 2468-2483
  • 69 Hilscher MB, Sehrawat T, Arab JP. et al. Mechanical stretch increases expression of CXCL1 in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension. Gastroenterology 2019; 157 (01) 193-209.e9
  • 70 Gracia-Sancho J, Caparrós E, Fernández-Iglesias A, Francés R. Role of liver sinusoidal endothelial cells in liver diseases. Nat Rev Gastroenterol Hepatol 2021; 18 (06) 411-431
  • 71 Gracia-Sancho J, Marrone G, Fernández-Iglesias A. Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol 2019; 16 (04) 221-234
  • 72 Liu S, Premont RT, Rockey DC. Endothelial nitric-oxide synthase (eNOS) is activated through G-protein-coupled receptor kinase-interacting protein 1 (GIT1) tyrosine phosphorylation and Src protein. J Biol Chem 2014; 289 (26) 18163-18174
  • 73 Deleve LD, Wang X, Guo Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology 2008; 48 (03) 920-930
  • 74 Kostallari E, Shah VH. Pericytes in the liver. Adv Exp Med Biol 2019; 1122: 153-167
  • 75 Tacke F, Puengel T, Loomba R, Friedman SL. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J Hepatol 2023; S0168-8278 (23)00218-0
  • 76 Ruan B, Duan JL, Xu H. et al. Capillarized liver sinusoidal endothelial cells undergo partial endothelial-mesenchymal transition to actively deposit sinusoidal ECM in liver fibrosis. Front Cell Dev Biol 2021; 9: 671081
  • 77 Winkler M, Staniczek T, Kürschner SW. et al. Endothelial GATA4 controls liver fibrosis and regeneration by preventing a pathogenic switch in angiocrine signaling. J Hepatol 2021; 74 (02) 380-393
  • 78 Drzewiecki K, Choi J, Brancale J. et al. GIMAP5 maintains liver endothelial cell homeostasis and prevents portal hypertension. J Exp Med 2021; 218 (07) e20201745
  • 79 Xu M, Xu HH, Lin Y. et al. LECT2, a ligand for Tie1, plays a crucial role in liver fibrogenesis. Cell 2019; 178 (06) 1478-1492.e20
  • 80 Bosch J, Groszmann RJ, Shah VH. Evolution in the understanding of the pathophysiological basis of portal hypertension: how changes in paradigm are leading to successful new treatments. J Hepatol 2015; 62 (1, Suppl): S121-S130
  • 81 Engelmann C, Clària J, Szabo G, Bosch J, Bernardi M. Pathophysiology of decompensated cirrhosis: portal hypertension, circulatory dysfunction, inflammation, metabolism and mitochondrial dysfunction. J Hepatol 2021; 75 (Suppl. 01) S49-S66
  • 82 Gunarathne LS, Rajapaksha H, Shackel N, Angus PW, Herath CB. Cirrhotic portal hypertension: from pathophysiology to novel therapeutics. World J Gastroenterol 2020; 26 (40) 6111-6140
  • 83 Iwakiri Y, Trebicka J. Portal hypertension in cirrhosis: pathophysiological mechanisms and therapy. JHEP Rep 2021; 3 (04) 100316
  • 84 Bhatia R, Matsushita K, Yamakuchi M, Morrell CN, Cao W, Lowenstein CJ. Ceramide triggers Weibel-Palade body exocytosis. Circ Res 2004; 95 (03) 319-324
  • 85 Riddell DR, Owen JS. Nitric oxide and platelet aggregation. Vitam Horm 1999; 57: 25-48
  • 86 Greuter T, Yaqoob U, Gan C. et al. Mechanotransduction-induced glycolysis epigenetically regulates a CXCL1-dominant angiocrine signaling program in liver sinusoidal endothelial cells in vitro and in vivo. J Hepatol 2022; 77 (03) 723-734
  • 87 Younossi ZM. Non-alcoholic fatty liver disease - a global public health perspective. J Hepatol 2019; 70 (03) 531-544
  • 88 Kus E, Kaczara P, Czyzynska-Cichon I. et al. LSEC fenestrae are preserved despite pro-inflammatory phenotype of liver sinusoidal endothelial cells in mice on high fat diet. Front Physiol 2019; 10: 6
  • 89 Guo Q, Furuta K, Islam S. et al. Liver sinusoidal endothelial cell expressed vascular cell adhesion molecule 1 promotes liver fibrosis. Front Immunol 2022; 13: 983255
  • 90 Kawashita E, Ozaki T, Ishihara K, Kashiwada C, Akiba S. Endothelial group IVA phospholipase A2 promotes hepatic fibrosis with sinusoidal capillarization in the early stage of non-alcoholic steatohepatitis in mice. Life Sci 2022; 294: 120355
  • 91 Miyao M, Kotani H, Ishida T. et al. Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression. Lab Invest 2015; 95 (10) 1130-1144
  • 92 Verhaegh P, Wisse E, de Munck T. et al. Electron microscopic observations in perfusion-fixed human non-alcoholic fatty liver disease biopsies. Pathology 2021; 53 (02) 220-228
  • 93 Francque S, Laleman W, Verbeke L. et al. Increased intrahepatic resistance in severe steatosis: endothelial dysfunction, vasoconstrictor overproduction and altered microvascular architecture. Lab Invest 2012; 92 (10) 1428-1439
  • 94 Pasarín M, La Mura V, Gracia-Sancho J. et al. Sinusoidal endothelial dysfunction precedes inflammation and fibrosis in a model of NAFLD. PLoS One 2012; 7 (04) e32785
  • 95 Wei A, Gu Z, Li J. et al. Clinical adverse effects of endothelin receptor antagonists: insights from the meta-analysis of 4894 patients from 24 randomized double-blind placebo-controlled clinical trials. J Am Heart Assoc 2016; 5 (11) e003896
  • 96 Fang ZQ, Ruan B, Liu JJ. et al. Notch-triggered maladaptation of liver sinusoidal endothelium aggravates nonalcoholic steatohepatitis through endothelial nitric oxide synthase. Hepatology 2022; 76 (03) 742-758
  • 97 Furuta K, Guo Q, Pavelko KD. et al. Lipid-induced endothelial vascular cell adhesion molecule 1 promotes nonalcoholic steatohepatitis pathogenesis. J Clin Invest 2021; 131 (06) e143690
  • 98 Miyachi Y, Tsuchiya K, Komiya C. et al. Roles for cell-cell adhesion and contact in obesity-induced hepatic myeloid cell accumulation and glucose intolerance. Cell Rep 2017; 18 (11) 2766-2779
  • 99 Weston CJ, Shepherd EL, Claridge LC. et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest 2015; 125 (02) 501-520
  • 100 Ibrahim SH. Sinusoidal endotheliopathy in nonalcoholic steatohepatitis: therapeutic implications. Am J Physiol Gastrointest Liver Physiol 2021; 321 (01) G67-G74
  • 101 Martin-Armas M, Simon-Santamaria J, Pettersen I, Moens U, Smedsrød B, Sveinbjørnsson B. Toll-like receptor 9 (TLR9) is present in murine liver sinusoidal endothelial cells (LSECs) and mediates the effect of CpG-oligonucleotides. J Hepatol 2006; 44 (05) 939-946
  • 102 Wu J, Meng Z, Jiang M. et al. Toll-like receptor-induced innate immune responses in non-parenchymal liver cells are cell type-specific. Immunology 2010; 129 (03) 363-374
  • 103 Pruenster M, Mudde L, Bombosi P. et al. The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat Immunol 2009; 10 (01) 101-108
  • 104 Hammoutene A, Biquard L, Lasselin J. et al. A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. J Hepatol 2020; 72 (03) 528-538
  • 105 Maeso-Díaz R, Gracia-Sancho J. Aging and chronic liver disease. Semin Liver Dis 2020; 40 (04) 373-384
  • 106 Morsiani C, Bacalini MG, Santoro A. et al. The peculiar aging of human liver: a geroscience perspective within transplant context. Ageing Res Rev 2019; 51: 24-34
  • 107 Pinto C, Ninfole E, Gaggiano L, Benedetti A, Marzioni M, Maroni L. Aging and the biological response to liver injury. Semin Liver Dis 2020; 40 (03) 225-232
  • 108 Zhao Y, Yang Y, Li Q, Li J. Understanding the unique microenvironment in the aging liver. Front Med (Lausanne) 2022; 9: 842024
  • 109 Maeso-Díaz R, Ortega-Ribera M, Lafoz E. et al. Aging influences hepatic microvascular biology and liver fibrosis in advanced chronic liver disease. Aging Dis 2019; 10 (04) 684-698
  • 110 Goligorsky MS. Microvascular rarefaction: the decline and fall of blood vessels. Organogenesis 2010; 6 (01) 1-10
  • 111 Hilmer SN, Cogger VC, Fraser R, McLean AJ, Sullivan D, Le Couteur DG. Age-related changes in the hepatic sinusoidal endothelium impede lipoprotein transfer in the rat. Hepatology 2005; 42 (06) 1349-1354
  • 112 Grunewald M, Kumar S, Sharife H. et al. Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science 2021; 373 (6554): eabc8479
  • 113 Hunt NJ, Kang SWS, Lockwood GP, Le Couteur DG, Cogger VC. Hallmarks of aging in the liver. Comput Struct Biotechnol J 2019; 17: 1151-1161
  • 114 Rohn F, Kordes C, Buschmann T. et al. Impaired integrin α51-mediated hepatocyte growth factor release by stellate cells of the aged liver. Aging Cell 2020; 19 (04) e13131
  • 115 Warren A, Cogger VC, Fraser R, Deleve LD, McCuskey RS, Le Couteur DG. The effects of old age on hepatic stellate cells. Curr Gerontol Geriatr Res 2011; 439835
  • 116 McCuskey RS, Bethea NW, Wong J. et al. Ethanol binging exacerbates sinusoidal endothelial and parenchymal injury elicited by acetaminophen. J Hepatol 2005; 42 (03) 371-377
  • 117 Yang Y, Sangwung P, Kondo R. et al. Alcohol-induced Hsp90 acetylation is a novel driver of liver sinusoidal endothelial dysfunction and alcohol-related liver disease. J Hepatol 2021; 75 (02) 377-386
  • 118 Halpern KB, Shenhav R, Matcovitch-Natan O. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 2017; 542 (7641): 352-356
  • 119 Novak RF, Woodcroft KJ. The alcohol-inducible form of cytochrome P450 (CYP 2E1): role in toxicology and regulation of expression. Arch Pharm Res 2000; 23 (04) 267-282
  • 120 Galdieri L, Zhang T, Rogerson D, Lleshi R, Vancura A. Protein acetylation and acetyl coenzyme a metabolism in budding yeast. Eukaryot Cell 2014; 13 (12) 1472-1483
  • 121 Kou K, Sun X, Tian G, Zhi Y, Fan Z, Lv G. The mechanisms of systemic inflammatory and immunosuppressive acute-on-chronic liver failure and application prospect of single-cell sequencing. J Immunol Res 2022; 5091275
  • 122 Liu M, Cao S, He L. et al. Super enhancer regulation of cytokine-induced chemokine production in alcoholic hepatitis. Nat Commun 2021; 12 (01) 4560
  • 123 Neumann K, Erben U, Kruse N. et al. Chemokine transfer by liver sinusoidal endothelial cells contributes to the recruitment of CD4+ T cells into the murine liver. PLoS One 2015; 10 (06) e0123867
  • 124 Chang B, Xu MJ, Zhou Z. et al. Short- or long-term high-fat diet feeding plus acute ethanol binge synergistically induce acute liver injury in mice: an important role for CXCL1. Hepatology 2015; 62 (04) 1070-1085
  • 125 Pott S, Lieb JD. What are super-enhancers?. Nat Genet 2015; 47 (01) 8-12
  • 126 Ito Y, Bethea NW, Abril ER, McCuskey RS. Early hepatic microvascular injury in response to acetaminophen toxicity. Microcirculation 2003; 10 (05) 391-400
  • 127 Badmann A, Langsch S, Keogh A, Brunner T, Kaufmann T, Corazza N. TRAIL enhances paracetamol-induced liver sinusoidal endothelial cell death in a Bim- and Bid-dependent manner. Cell Death Dis 2012; 3 (12) e447
  • 128 Biagioli M, Marchiano S, di Giorgio C. et al. Combinatorial targeting of G-protein-coupled bile acid receptor 1 and cysteinyl leukotriene receptor 1 reveals a mechanistic role for bile acids and leukotrienes in drug-induced liver injury. Hepatology 2023; 78 (01) 26-44
  • 129 Holt MP, Yin H, Ju C. Exacerbation of acetaminophen-induced disturbances of liver sinusoidal endothelial cells in the absence of Kupffer cells in mice. Toxicol Lett 2010; 194 (1–2): 34-41
  • 130 You Q, Holt M, Yin H, Li G, Hu CJ, Ju C. Role of hepatic resident and infiltrating macrophages in liver repair after acute injury. Biochem Pharmacol 2013; 86 (06) 836-843
  • 131 Teratani T, Tomita K, Suzuki T. et al. Free cholesterol accumulation in liver sinusoidal endothelial cells exacerbates acetaminophen hepatotoxicity via TLR9 signaling. J Hepatol 2017; 67 (04) 780-790
  • 132 Rampes S, Ma D. Hepatic ischemia-reperfusion injury in liver transplant setting: mechanisms and protective strategies. J Biomed Res 2019; 33 (04) 221-234
  • 133 Hide D, Warren A, Fernández-Iglesias A. et al. Ischemia/Reperfusion injury in the aged liver: the importance of the sinusoidal endothelium in developing therapeutic strategies for the elderly. J Gerontol A Biol Sci Med Sci 2020; 75 (02) 268-277
  • 134 Miyashita T, Nakanuma S, Ahmed AK. et al. Ischemia reperfusion-facilitated sinusoidal endothelial cell injury in liver transplantation and the resulting impact of extravasated platelet aggregation. Eur Surg 2016; 48: 92-98
  • 135 Bautista AP, Spitzer JJ. Platelet activating factor stimulates and primes the liver, Kupffer cells and neutrophils to release superoxide anion. Free Radic Res Commun 1992; 17 (03) 195-209
  • 136 Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol 2003; 284 (01) G15-G26
  • 137 Upadhya GA, Topp SA, Hotchkiss RS, Anagli J, Strasberg SM. Effect of cold preservation on intracellular calcium concentration and calpain activity in rat sinusoidal endothelial cells. Hepatology 2003; 37 (02) 313-323
  • 138 Guixé-Muntet S, de Mesquita FC, Vila S. et al. Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury. J Hepatol 2017; 66 (01) 86-94
  • 139 Mandili G, Alchera E, Merlin S. et al. Mouse hepatocytes and LSEC proteome reveal novel mechanisms of ischemia/reperfusion damage and protection by A2aR stimulation. J Hepatol 2015; 62 (03) 573-580
  • 140 Russo L, Gracia-Sancho J, García-Calderó H. et al. Addition of simvastatin to cold storage solution prevents endothelial dysfunction in explanted rat livers. Hepatology 2012; 55 (03) 921-930
  • 141 Xin J, Yang T, Wu X. et al. Spatial transcriptomics analysis of zone-dependent hepatic ischemia-reperfusion injury murine model. Commun Biol 2023; 6 (01) 194
  • 142 Furuta K, Tang X, Islam S, Tapia A, Chen ZB, Ibrahim SH. Endotheliopathy in the metabolic syndrome: mechanisms and clinical implications. Pharmacol Ther 2023; 244: 108372
  • 143 Tripathi DM, Rohilla S, Kaur I. et al. Immunonano-lipocarrier-mediated liver sinusoidal endothelial cell-specific RUNX1 inhibition impedes immune cell infiltration and hepatic inflammation in murine model of NASH. Int J Mol Sci 2021; 22 (16) 8489
  • 144 Zhang LF, Wang XH, Zhang CL. et al. Sequential nano-penetrators of capillarized liver sinusoids and extracellular matrix barriers for liver fibrosis therapy. ACS Nano 2022; 16 (09) 14029-14042
  • 145 Marrone G, Maeso-Díaz R, García-Cardena G. et al. KLF2 exerts antifibrotic and vasoprotective effects in cirrhotic rat livers: behind the molecular mechanisms of statins. Gut 2015; 64 (09) 1434-1443
  • 146 Marrone G, Russo L, Rosado E. et al. The transcription factor KLF2 mediates hepatic endothelial protection and paracrine endothelial-stellate cell deactivation induced by statins. J Hepatol 2013; 58 (01) 98-103
  • 147 Cui H, Divakaran A, Pandey AK. et al. Selective N-terminal BET bromodomain inhibitors by targeting non-conserved residues and structured water displacement*. Angew Chem Int Ed Engl 2021; 60 (03) 1220-1226
  • 148 Tateya S, Rizzo NO, Handa P. et al. Endothelial NO/cGMP/VASP signaling attenuates Kupffer cell activation and hepatic insulin resistance induced by high-fat feeding. Diabetes 2011; 60 (11) 2792-2801
  • 149 Turaga RC, Satyanarayana G, Sharma M. et al. Targeting integrin αvβ3 by a rationally designed protein for chronic liver disease treatment. Commun Biol 2021; 4 (01) 1087
  • 150 Kalucka J, de Rooij LPMH, Goveia J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 2020; 180 (04) 764-779.e20
  • 151 Aizarani N, Saviano A. Sagar, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 2019; 572 (7768): 199-204
  • 152 Pita-Juarez Y, Karagkouni D, Kalavros N. et al. A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients. bioRxiv 2022;
  • 153 Holland CH, Ramirez Flores RO, Myllys M. et al. Transcriptomic cross-species analysis of chronic liver disease reveals consistent regulation between humans and mice. Hepatol Commun 2022; 6 (01) 161-177
  • 154 Bondareva O, Rodríguez-Aguilera JR, Oliveira F. et al. Single-cell profiling of vascular endothelial cells reveals progressive organ-specific vulnerabilities during obesity. Nat Metab 2022; 4 (11) 1591-1610
  • 155 Betsholtz C. Toward a granular molecular-anatomic map of the blood vasculature - single-cell RNA sequencing makes the leap. Ups J Med Sci 2022; 127: 127
  • 156 Tabula Muris C, Overall C, Logistical C. et al; Tabula Muris Consortium, Overall coordination, Logistical coordination, Organ collection and processing, Library preparation and sequencing, Computational data analysis, Cell type annotation, Writing group, Supplemental text writing group, Principal investigators. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 2018; 562 (7727): 367-372
  • 157 Paik DT, Tian L, Williams IM. et al. Single-cell RNA sequencing unveils unique transcriptomic signatures of organ-specific endothelial cells. Circulation 2020; 142 (19) 1848-1862
  • 158 Massalha H, Bahar Halpern K, Abu-Gazala S. et al. A single cell atlas of the human liver tumor microenvironment. Mol Syst Biol 2020; 16 (12) e9682
  • 159 Cavalli M, Diamanti K, Pan G. et al. A multi-omics approach to liver diseases: integration of single nuclei transcriptomics with proteomics and HiCap bulk data in human liver. OMICS 2020; 24 (04) 180-194