Subscribe to RSS
DOI: 10.1055/a-2130-6944
Differential Diagnosis of Changes in Intraocular Lenses
Article in several languages: deutsch | EnglishAbstract
Differentiating between various intraocular lens (IOL) changes can be a challenge. In particular, certain IOL models carry the risk of late postoperative calcification. A major cause of IOL exchange surgery could be avoided if appropriate modifications were made during the IOL manufacturing process. The use of a hydrophilic acrylate carries the risk of IOL calcification, especially when a secondary procedure, such as a pars plana vitrectomy or other procedures using gas or air, is performed. In secondary IOL calcification, there is a wide range of opacification patterns, which are usually located in the centre on the anterior surface of the IOL or sometimes elsewhere. Often, granular deposits accumulate just below or on the surface of the IOL, leading to significant deterioration in visual quality and eventually requiring IOL exchange surgery. Therefore, in the case of eyes requiring secondary surgical intraocular intervention in the future, the use of hydrophilic IOLs should be critically evaluated. With regard to hydrophobic IOL materials, there are clear differences in the susceptibility to the formation of glistenings. Over time, there has been a significant decrease in glistening formation over the past 30 years due to optimisation of the material. With hydrophobic IOLs, special care should also be taken to avoid mechanical damage. In general, the only treatment option for functionally-impairing IOL opacification is surgical lens exchange, which carries potential risks of complications. In cases with a low degree of functional impairment, and especially in eyes with additional ocular diseases, it may be difficult to weigh the risk of additional surgery against the potential benefit. In some cases, it may be more appropriate not to perform an IOL exchange despite the IOL opacification. Recent visualisation methods that allow high-resolution analysis of the opacities in vivo and in vitro may be used in the future to estimate the functional effects of various IOL material changes on the optical quality.
Key words
intraocular lens material - IOL calcification - IOL glistenings - optical coherence tomography - slit lamp diagnosticPublication History
Received: 25 December 2022
Accepted: 04 July 2023
Article published online:
11 August 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Auffarth GU, Apple DJ. [History of the development of intraocular lenses]. Ophthalmologe 2001; 98: 1017-1028 DOI: 10.1007/s003470170020.
- 2 Auffarth GU, Wilcox M, Sims JC. et al. Analysis of 100 explanted one-piece and three-piece silicone intraocular lenses. Ophthalmology 1995; 102: 1144-1150
- 3 Gurabardhi M, Häberle H, Aurich H. et al. Serial intraocular lens opacifications of different designs from the same manufacturer: Clinical and light microscopic results of 71 explant cases. J Cataract Refract Surg 2018; 44: 1326-1332 DOI: 10.1016/j.jcrs.2018.07.026.
- 4 Yildirim TM, Auffarth GU, Łabuz G. et al. Material Analysis and Optical Quality Assessment of Opacified Hydrophilic Acrylic Intraocular Lenses After Pars Plana Vitrectomy. Am J Ophthalmol 2018; 193: 10-19 DOI: 10.1016/j.ajo.2018.06.002.
- 5 Yildirim TM, Khoramnia R, Schickhardt SK. et al. Variation in intraocular lens calcification under different environmental conditions in eyes with supplementary sulcus-supported lenses. Am J Ophthalmol Case Rep 2020; 19: 100797 DOI: 10.1016/j.ajoc.2020.100797.
- 6 Britz L, Schickhardt SK, Yildirim TM. et al. Development of a standardized in vitro model to reproduce hydrophilic acrylic intraocular lens calcification. Sci Rep 2022; 12: 7685 DOI: 10.1038/s41598-022-11486-0.
- 7 Augustin AJ. [Blue Light-Filtering IOLs – Currently available data]. Klin Monbl Augenheilkd 2010; 227: 617-623 DOI: 10.1055/s-0029-1245524.
- 8 Yildirim TM, Labuz G, Khoramnia R. et al. Impact of Primary Calcification in Segmented Refractive Bifocal Intraocular Lenses on Optical Performance Including Straylight. J Refract Surg 2020; 36: 20-27 DOI: 10.3928/1081597X-20191119-01.
- 9 Thomes BE, Callaghan TA. Evaluation of in vitro glistening formation in hydrophobic acrylic intraocular lenses. Clin Ophthalmol 2013; 7: 1529-1534 DOI: 10.2147/OPTH.S44208.
- 10 Ballin N. Glistenings in injection-molded lens. J Am Intraocul Implant Soc 1984; 10: 473 DOI: 10.1016/s0146-2776(84)80052-x.
- 11 Dick HB, Olson RJ, Augustin AJ. et al. Vacuoles in the Acrysof intraocular lens as factor of the presence of serum in aqueous humor. Ophthalmic Res 2001; 33: 61-67 DOI: 10.1159/000055645.
- 12 Tetz M, Jorgensen MR. New Hydrophobic IOL Materials and Understanding the Science of Glistenings. Curr Eye Res 2015; 40: 969-981 DOI: 10.3109/02713683.2014.978476.
- 13 Ong MD, Callaghan TA, Pei R. et al. Etiology of surface light scattering on hydrophobic acrylic intraocular lenses. J Cataract Refract Surg 2012; 38: 1833-1844 DOI: 10.1016/j.jcrs.2012.05.043.
- 14 Miyata A, Uchida N, Nakajima K. et al. Clinical and experimental observation of glistening in acrylic intraocular lenses. Jpn J Ophthalmol 2001; 45: 564-569 DOI: 10.1016/s0021-5155(01)00429-4.
- 15 Weindler JN, Łabuz G, Yildirim TM. et al. The impact of glistenings on the optical quality of a hydrophobic acrylic intraocular lens. J Cataract Refract Surg 2019; 45: 1020-1025 DOI: 10.1016/j.jcrs.2019.01.025.
- 16 Łabuz G, Knebel D, Auffarth GU. et al. Glistening Formation and Light Scattering in Six Hydrophobic-Acrylic Intraocular Lenses. Am J Ophthalmol 2018; 196: 112-120 DOI: 10.1016/j.ajo.2018.08.032.
- 17 Wang Q, Yildirim TM, Schickhardt SK. et al. Quantification of the In Vitro Predisposition to Glistening Formation in One Manufacturerʼs Acrylic Intraocular Lenses Made in Different Decades. Ophthalmol Ther 2021; 10: 165-174 DOI: 10.1007/s40123-020-00329-8.
- 18 Khoramnia R, Yildirim TM, Łabuz G. et al. [Opacification of intraocular lenses: laboratory and clinical findings]. Ophthalmologe 2021; 118: 633-642 DOI: 10.1007/s00347-020-01259-3.
- 19 Neuhann IM, Kleinmann G, Apple DJ. A new classification of calcification of intraocular lenses. Ophthalmology 2008; 115: 73-79 DOI: 10.1016/j.ophtha.2007.02.016.
- 20 Frohn A, Dick HB, Augustin AJ. et al. Late opacification of the foldable hydrophilic acrylic lens SC60B-OUV. Ophthalmology 2001; 108: 1999-2004
- 21 Neuhann T, Yildirim TM, Son HS. et al. Reasons for explantation, demographics, and material analysis of 200 intraocular lens explants. J Cataract Refract Surg 2020; 46: 20-26 DOI: 10.1016/j.jcrs.2019.08.045.
- 22 Werner L. Causes of intraocular lens opacification or discoloration. J Cataract Refract Surg 2007; 33: 713-726 DOI: 10.1016/j.jcrs.2007.01.015.
- 23 Khoramnia R, Salgado JP, Auffarth GU. et al. [Opacification of a hydrophilic intraocular lens 4 years after cataract surgery. A biomaterial analysis]. Ophthalmologe 2012; 109: 483-486 DOI: 10.1007/s00347-011-2487-6.
- 24 Tandogan T, Khoramnia R, Choi CY. et al. Optical and material analysis of opacified hydrophilic intraocular lenses after explantation: a laboratory study. BMC Ophthalmol 2015; 15: 170 DOI: 10.1186/s12886-015-0149-1.
- 25 Giers BC, Tandogan T, Auffarth GU. et al. Hydrophilic intraocular lens opacification after posterior lamellar keratoplasty – a material analysis with special reference to optical quality assessment. BMC Ophthalmol 2017; 17: 150 DOI: 10.1186/s12886-017-0546-8.
- 26 Pandey SK, Werner L, Apple DJ. et al. Calcium precipitation on the optical surfaces of a foldable intraocular lens: a clinicopathological correlation. Arch Ophthalmol 2002; 120: 391-393
- 27 Yildirim TM, Auffarth GU, Tandogan T. et al. [In Vitro Evaluation of the Optical Quality of Segmental Refractive Multifocal Intraocular Lenses]. Klin Monbl Augenheilkd 2019; 236: 983-989 DOI: 10.1055/s-0043-119993.
- 28 Schröder G, Treiber H. Messung optischer Kenngrößen. In: Schröder G, Treiber H. Hrsg. Technische Optik: Grundlagen und Anwendungen. Würzburg: Vogel; 2007: 289
- 29 Khoramnia R, Yildirim TM, Tandogan T. et al. [Optical quality of three trifocal intraocular lens models: An optical bench comparison]. Ophthalmologe 2018; 115: 21-28 DOI: 10.1007/s00347-017-0573-0.
- 30 Alarcon A, Canovas C, Rosen R. et al. Preclinical metrics to predict through-focus visual acuity for pseudophakic patients. Biomed Opt Express 2016; 7: 1877-1888 DOI: 10.1364/boe.7.001877.
- 31 Papadatou E, Labuz G, Van Den Berg TJTP. et al. Assessing the optical quality of commercially available intraocular lenses by means of modulation transfer function and straylight. Invest Ophthalmol Vis Sci 2016; 57: 3115
- 32 Łabuz G, Vargas-Martin F, van den Berg TJ. et al. Method for in vitro assessment of straylight from intraocular lenses. Biomed Opt Express 2015; 6: 4457-4464 DOI: 10.1364/BOE.6.004457.
- 33 Gartaganis SP, Prahs P, Lazari ED. et al. Calcification of Hydrophilic Acrylic Intraocular Lenses With a Hydrophobic Surface: Laboratory Analysis of 6 Cases. Am J Ophthalmol 2016; 168: 68-77 DOI: 10.1016/j.ajo.2016.04.018.
- 34 Bach M, Wesemann W, Kolling G. et al. [Photopic contrast sensitivity. Local contrast perception]. Ophthalmologe 2008; 105: 46-48 50–59 DOI: 10.1007/s00347-007-1605-y.
- 35 Jung H, Han SU, Kim S. et al. Comparison of two different contrast sensitivity devices in young adults with normal visual acuity with or without refractive surgery. Sci Rep 2022; 12: 12882 DOI: 10.1038/s41598-022-16855-3.