Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(17): 2001-2004
DOI: 10.1055/a-2131-3157
DOI: 10.1055/a-2131-3157
letter
Ni-Catalyzed Reductive Coupling of Alkyl Carbonochloridates and Aryl Iodides
We thank the National Natural Science Foundation of China (21901162) for financial support.
Abstract
A Ni-catalyzed reductive coupling of alkyl carbonochloridates and aryl iodides for the synthesis of aromatic esters has been developed. The present method is a new type of reductive coupling for building Csp2–CO bonds, and it avoids using toxic carbon monoxide gas. It tolerates various aryl iodides, and a coordinating group in alkyl carbonochloridates is key to improving the yield of the reaction.
Key words
Ni catalysis - reductive coupling - aryl ester - Csp2–Csp2 coupling - alkyl carbonochloridateSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2131-3157.
- Supporting Information
Publication History
Received: 27 April 2023
Accepted after revision: 17 July 2023
Accepted Manuscript online:
18 July 2023
Article published online:
14 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Thompson DJ. In Comprehensive Organic Synthesis, Vol. 4. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 1028
- 2a Baeyer A, Villiger V. Ber. Dtsch. Chem. Ges. 1899; 32: 3625
- 2b Stewart JD. Curr. Org. Chem. 1998; 2: 195
- 2c Bolm C, Beckmann O, Luong TK. K. Metal-Catalyzed Baeyer-Villiger Reactions . Beller M, Bolm C. Wiley-VCH; Weinheim: 1998. 213
- 3a Claisen L. Ber. Dtsch. Chem. Ges. 1887; 20: 646
- 3b Tischtschenko W. Chem. Zentralbl. 1906; 77: 1309
- 4a Skoda-Foldes R, Kollar L. Curr. Org. Chem. 2002; 6: 1097
- 4b Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
- 4c Schoenberg A, Bartoletti I, Heck RF. J. Org. Chem. 1974; 39: 3318
- 4d Alper H, Antebi S, Woell JB. Angew. Chem., Int. Ed. Engl. 1984; 23: 732
- 4e Munday RH, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2008; 130: 2754
- 4f Liu N, Wu X, Wang C, Qu J, Chen Y. Chem. Commun. 2022; 58: 4643
- 4g Ueda T, Konishi H, Manabe K. Org. Lett. 2012; 14: 3100
- 4h Wang M, Zhang X, Ma M, Zhao B. Org. Lett. 2022; 24: 6031
- 4i Ye T, Cheng F, Zhang J, Liu Y.-Z, Wang Q, Deng W.-P. Org. Chem. Front. 2023; 10: 1537
- 5a Liu Q, Zhang H, Lei A. Angew. Chem. Int. Ed. 2011; 50: 10788
- 5b Liu Y, Chen Y.-H, Yi H, Lei A. ACS Catal. 2022; 12: 7470
- 5c Alper H, Hartstock FW, Despeyroux B. J. Chem. Soc., Chem. Commun. 1984; 905
- 5d Zhao Y, Jin L, Li P, Lei A. J. Am. Chem. Soc. 2008; 130: 9429
- 5e Liu Q, Li G, He J, Liu J, Li P, Lei A. Angew. Chem. Int. Ed. 2010; 49: 3371
- 5f Lee T.-H, Jayakumar J, Cheng C.-H, Chuang S.-C. Chem. Commun. 2013; 49: 11797
- 5g Luo S, Luo F.-X, Zhang X.-S, Shi Z.-J. Angew. Chem. Int. Ed. 2013; 52: 10598
- 6a Reppe W. Justus Liebigs Ann. Chem. 1953; 582: 1
- 6b Reppe W, Kroper H. Justus Liebigs Ann. Chem. 1953; 582: 38
- 6c Reppe W, Kroper H, Kutepow N, Pistor H. Justus Liebigs Ann. Chem. 1953; 582: 72
- 6d Kiss G. Chem. Rev. 2001; 101: 3435
- 6e Alper H, Despeyroux B, Woell JB. Tetrahedron Lett. 1983; 24: 5691
- 6f Yu R, Cai S.-Z, Li C, Fang X. Angew. Chem. Int. Ed. 2022; 61: e202200733
- 7a Negishi E.-i, Bagheri V, Chatterjee S, Luo F.-T, Miller JA, Stoll AT. Tetrahedron Lett. 1983; 24: 5181
- 7b Duan Y.-Z, Deng M.-Z. Synlett 2005; 355
- 7c Bottalico D, Fiandanese V, Marchese G, Punzi A. Synlett 2007; 974
- 7d Ackerman LK. G, Martinez Alvarado JI, Doyle AG. J. Am. Chem. Soc. 2018; 140: 14059
- 8a Knappke CE. I, Grupe S, Gartner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
- 8b Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
- 8c Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242
- 8d Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
- 8e Liu J, Ye Y, Sessler JL, Gong H. Acc. Chem. Res. 2020; 53: 1833
- 8f Cheng L, Lin Q, Chen Y, Gong H. Synthesis 2022; 54: 4426
- 9a Liu Y, Cornella J, Martin R. J. Am. Chem. Soc. 2014; 136: 11212
- 9b Börjesson M, Moragas T, Martin R. J. Am. Chem. Soc. 2016; 138: 7504
- 9c Tortajada A, Börjesson M, Martin R. Acc. Chem. Res. 2021; 54: 3941
- 10 Zhu Z, Gong Y, Tong W, Xue W, Gong H. Org. Lett. 2021; 23: 2158
- 11 Zheng M, Xue W, Xue T, Gong H. Org. Lett. 2016; 18: 6152
- 12 Ding Z, Kong W. Molecules 2022; 27: 5899
- 13 1-(Benzoyloxy)propan-2-yl Methyl Terephthalate (3a) – Typical Procedure To a flame-dried Schlenk flask were added 4,4′-dimethyl-2,2′-bipyridine (8.3 mg, 0.045 mmol, 15 mol%), zinc powder (58.8 mg, 0.9 mmol, 300 mol%), and 2a (78.7 mg, 0.30 mmol, 100 mol%). The tube was moved into a glove box, then Ni(acac)2 (7.7 mg, 0.03 mmol, 10 mol%), MgBr2 (27.6 mg, 0.15 mmol, 10 mol%), and LiBr (78.2 mg, 0.9 mmol, 300 mol%) were added. After taking out from the glove box, a mixed solvent of DMA/MeCN (0.2/0.8, v/v, 1.0 mL) was added, followed by adding 1a (108.9 mg, 0.45 mmol, 150 mol%) via a syringe. The reaction mixture was allowed to stir in an oil bath at 40 °C for 12 h under N2 atmosphere. The mixture was directly loaded onto a silica column without working up. The residue was rinsed with small amount of DCM or eluent. The mixture was purified by flash column chromatography to provide the product 76.1 mg as a white solid (74%); mp 49–50 °C. 1H NMR (400 MHz, CDCl3): δ = 8.16–7.99 (m, 4 H), 8.00 (m, 2 H), 7.59–7.47 (m, 1 H), 7.47–7.34 (m, 2 H), 5.54 (m, 1 H), 4.58–4.39 (m, 2 H), 3.91 (s, 3 H), 1.47 (d, J = 6.5 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 166.4, 166.3, 165.3, 134.1, 133.3, 129.8, 129.7, 129.7, 128.5, 127.3, 69.6, 66.6, 52.5, 16.7. HRMS (ESI): m/z calcd for [M + Na]+(C 19 H18NO6+): 365.0996; found: 365.0987
- 14 See the Supporting Information for details.
- 15a Wu F, Lu W, Qian Q, Ren Q, Gong H. Org. Lett. 2012; 14: 3044
- 15b Yin H, Zhao C, You H, Lin K, Gong H. Chem. Commun. 2012; 48: 7034
- 15c Cherney AH, Kadunce NT, Reisman SE. J. Am. Chem. Soc. 2013; 135: 7442
- 15d Zhao C, Jia X, Wang X, Gong H. J. Am. Chem. Soc. 2014; 136: 17645
- 15e Lin D, Chen Y, Dong Z, Pei P, Ji H, Tai L, Chen L.-A. CCS Chem. 2023; 5: 1386
- 15f Ji H, Lin D, Tai L, Li X, Shi Y, Han Q, Chen L.-A. J. Am. Chem. Soc. 2022; 144: 23019
- 16a Gomes P, Fillon H, Gosmini C, Labbé E, Périchon J. Tetrahedron 2002; 58: 8417
- 16b Amatore M, Gosmini C. Angew. Chem. Int. Ed. 2008; 47: 2089
- 16c Gosmini C, Bassene-Ernst C, Durandetti M. Tetrahedron 2009; 65: 6141
- 16d Qian Q, Zang Z, Wang S, Chen Y, Lin K, Gong H. Synlett 2013; 24: 619
- 16e Liu J, Ren Q, Zhang X, Gong H. Angew. Chem. Int. Ed. 2016; 55: 15544