Transfusionsmedizin 2024; 14(01): 17-28
DOI: 10.1055/a-2136-2945
Übersicht

Moderne Methoden der Blutaufbereitung

Modern Methods of Blood Processing
Clemens Boecker
1   DRK Blutspendedienst Baden-Württemberg – Hessen gGmbH, Institut für Transfusionsmedizin und Immunologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
,
Alexander Giss
2   Blutspendedienst des Bayerischen Roten Kreuzes (BRK), Wiesentheid, Deutschland
,
Matthias Johnsen
3   DRK Blutspendedienst Nord-Ost gGmbH, Institut für Transfusionsmedizin, Dresden, Deutschland
› Institutsangaben

Zusammenfassung

Vollblutspenden werden nach der Entnahme in Blutspendediensten zu den Blutkomponenten Erythrozytenkonzentrat, Therapeutisches Plasma und Thrombozytenkonzentrat weiterverarbeitet. Die Verarbeitung kann auf verschiedene Weise erfolgen. In diesem Übersichtsartikel erläutern wir die Unterschiede zwischen den beiden weltweit gebräuchlichsten Verfahren, dem Buffy-Coat-Verfahren und dem Plättchen-Reiches-Plasma-Verfahren, und beschreiben das in Deutschland standardgemäß eingesetzte semi-automatisierte Buffy-Coat Verfahren detaillierter. Darüber hinaus werden die verschiedenen Automatisierungsgrade in der Vollblutverarbeitung und die verschiedenen Ansätze zur weiteren Automatisierung beleuchtet. Im Rahmen dessen zeigen wir auf, welche Automatisierungsmaßnahmen in einigen Einrichtungen bereits umgesetzt werden konnten und welche neuen Techniken die weitere Automatisierung in Zukunft entscheidend prägen könnten.

Abstract

After collection, whole blood donations are processed into three blood components at blood donation centers: red blood cell concentrate, therapeutic plasma, and pooled platelet concentrate. Processing can be performed using different methods. In this review, we explain the differences between the two most commonly used methods worldwide, the buffy coat method and the platelet-rich plasma method. Furthermore, we provide a more in-depth description of the semi-automated Buffy Coat method, which is the standard in Germany. We highlight the various levels of automation involved in the processing of whole blood, along with the different approaches to further automating the process. In addition, we show which automation measures have already been implemented in some blood donation centers and which new techniques could have a decisive influence on further automation in the future.

Zusätzliches Material



Publikationsverlauf

Artikel online veröffentlicht:
19. Februar 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Dzik WS, Ziman A, Cohn C. et al. Survival after ultramassive transfusion: a review of 1360 cases. Transfusion 2016; 56: 558-563
  • 2 Holcomb JB, Zarzabal LA, Michalek JE. et al. Increased platelet:RBC ratios are associated with improved survival after massive transfusion. J Trauma 2011; 71: S318-S328
  • 3 Stinger HK, Spinella PC, Perkins JG. et al. The ratio of fibrinogen to red cells transfused affects survival in casualties receiving massive transfusions at an army combat support hospital. J Trauma 2008; 64: S79-S85 discussion S85
  • 4 Seidl S. Hämotherapie nach Maß. Dtsch Arztebl International. 1972; 69: A-2463-A-2469
  • 5 Cid J, Comasòlivas N, Pérez-Aliaga A. et al. Comparison of automated versus semi-automated whole blood processing systems: A systematic review. Vox Sang 2023; 118: 263-271
  • 6 AMG. Arzneimittelgesetz in der Fassung der Bekanntmachung vom 12. Dezember 2005 (BGBI. / S. 3394), das zuletzt durch Artikel 1 des Gesetzes vom 19. Juli 2023 (BGBI, / Nr. 197) geändert worden ist.
  • 7 TFG. Transfusionsgesetz in der Fassung der Bekanntmachung vom 28. August 2007 (BGBI. / S. 2169), das zuletzt durch Artikel 1a des Gesetzes vom 11. Mai 2023 (BGBI. 2023 / Nr. 123) geändert worden ist.
  • 8 AMWHV. Arzneimittel- und Wirkstoffherstellungsverordnung vom 3. November 2006 (BGBI. / S. 2523), die zuletzt durch Artikel 3a des Gesetzes vom 9. August 2019 (BGBI. / S. 1202) geändert worden ist.
  • 9 Bundesärztekammer. Richtlinie zur Gewinnung von Blut und Blutbestandteilen und zur Anwendung von Blutprodukten (Richtlinie Hämotherapie) gemäß §§ 12a und 18 des Transfusionsgesetzes (TFG). Stand 2023.
  • 10 Pérez Aliaga AI, Labata G, Aranda A. et al. Improvement of Blood Processing and Safety by Automation and Pathogen Reduction Technology. Transfusion Medicine and Hemotherapy 2021; 48: 290-297
  • 11 Malvaux N, Schuhmacher A, Defraigne F. et al. Remodelling whole blood processing through automation and pathogen reduction technology at the Luxembourg Red Cross. Transfus Apher Sci 2021; 60: 103195
  • 12 Slichter SJ. Platelet transfusion therapy. Hematol Oncol Clin North Am 2007; 21: 697-729 vii
  • 13 Sachs UJH, Bux J. Gewinnung, Herstellung und Lagerung von Blut und Blutkomponenten. In: Kiefel V, Mueller-Eckhardt C, Hrsg. Transfusionsmedizin und Immunhämatologie: Grundlagen – Therapie – Methodik. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011: 223-243
  • 14 Snyder EL, Hezzey A, Katz AJ. et al. Occurrence of the release reaction during preparation and storage of platelet concentrates. Vox Sang 1981; 41: 172-177
  • 15 Metcalfe P, Williamson LM, Reutelingsperger CP. et al. Activation during preparation of therapeutic platelets affects deterioration during storage: a comparative flow cytometric study of different production methods. Br J Haematol 1997; 98: 86-95
  • 16 Whisson M, Cheng A. Recovery of extra plasma during preparation of platelet concentrates using a new centrifugation support. Transfusion Medicine 1997; 7: 203-209
  • 17 Gupte SC. Automation in Blood Centre: Its impact on Blood Safety. Asian J Transfus Sci 2015; 9: S6-s10
  • 18 Pietersz RNI, Meer PF. Processing and storage of blood components: strategies to improve patient safety. International Journal of Clinical Transfusion Medicine 2015; 3: 55-64
  • 19 Acker JP, Hansen AL, Kurach JD. et al. A quality monitoring program for red blood cell components: in vitro quality indicators before and after implementation of semiautomated processing. Transfusion 2014; 54: 2534-2543
  • 20 Pasqualetti D, Ghirardini A, Cristina Arista M. et al. Blood component fractionation: manual versus automatic procedures. Transfus Apher Sci 2004; 30: 23-28
  • 21 Shih AW, Apelseth TO, Cardigan R. et al. Not all red cell concentrate units are equivalent: international survey of processing and in vitro quality data. Vox Sanguinis 2019; 114: 783-794
  • 22 Morish M, Ayob Y, Naim N. et al. Quality indicators for discarding blood in the National Blood Center, Kuala Lumpur. Asian J Transfus Sci 2012; 6: 19-23
  • 23 Cid J, Magnano L, Lozano M. Automation of blood component preparation from whole blood collections. Vox Sang 2014; 107: 10-18
  • 24 Serrano K, Levin E, Culibrk B. et al. Performance characteristics of a novel blood bag in-line closure device and subsequent product quality assessment. Transfusion 2010; 50: 2240-2248
  • 25 Lagerberg JW, Salado-Jimena JA, Löf H. et al. Evaluation of the quality of blood components obtained after automated separation of whole blood by a new multiunit processor. Transfusion 2013; 53: 1798-1807
  • 26 Agildere A, Richter E. Performance of the new separator Compomat G5. Transfusion. 2009
  • 27 Zehnder L, Schulzki T, Goede J et al. Erythrocyte storage in hypertonic (SAGM) or isotonic (PAGGSM) conservation medium: influence on cell properties. Vox Sanguinis 2008; 95: 280–287. 10.1111/j.1423-0410.2008.01097.x
  • 28 Hess JR. An update on solutions for red cell storage. Vox Sanguinis 2006; 91: 13–19. DOI: 10.1111/j.1423-0410.2006.00778.x
  • 29 Johnson L, Winter KM, Kwok M. et al. Evaluation of the quality of blood components prepared using the Reveos automated blood processing system. Vox Sang 2013; 105: 225-235
  • 30 El Ekiaby M. Automation in blood processing. ISBT Science Series 2017; 12: 87-90
  • 31 Intel. Industrielle Roboterarme: Ändern der Arbeitsweise (März 2020). Im Internet: https://intel.de/content/www/de/de/robotics/robotic-arm.html Stand: 21.11.2023.
  • 32 Höfer P. Einsatzmöglichkeiten der RFID-Technologie im Entnahme- und Herstellungsprozess des Blutspendedienstes des Bayerischen Roten Kreuzes. Hochschule Mannheim. 2017
  • 33 Magron A, Laugier J, Provost P. et al. Pathogen reduction technologies: The pros and cons for platelet transfusion. Platelets 2018; 29: 2-8
  • 34 Feys HB, Van Aelst B, Compernolle V. Biomolecular Consequences of Platelet Pathogen Inactivation Methods. Transfus Med Rev 2019; 33: 29-34
  • 35 Kaiser-Guignard J, Canellini G, Lion N. et al. The clinical and biological impact of new pathogen inactivation technologies on platelet concentrates. Blood Reviews 2014; 28: 235-241
  • 36 Picker SM, Oustianskaia L, Schneider V. et al. Functional characteristics of apheresis-derived platelets treated with ultraviolet light combined with either amotosalen-HCl (S-59) or riboflavin (vitamin B2) for pathogen-reduction. Vox Sanguinis 2009; 97: 26-33
  • 37 Larsson L, Sandgren P, Ohlsson S. et al. Non-phthalate plasticizer DEHT preserves adequate blood component quality during storage in PVC blood bags. Vox Sanguinis 2021; 116: 60-70
  • 38 Vermeulen C, den Besten G, van den Bos AG. et al. Clinical and in vitro evaluation of red blood cells collected and stored in a non-DEHP plasticized bag system. Vox Sanguinis 2022; 117: 1163-1170
  • 39 Almizraq RJ, Acker JP. Closing in on DEHP-free red blood cell concentrate containers. Transfusion 2018; 58: 1089-1092
  • 40 Lagerberg JW, Gouwerok E, Vlaar R. et al. In vitro evaluation of the quality of blood products collected and stored in systems completely free of di(2-ethylhexyl)phthalate–plasticized materials. Transfusion 2015; 55: 522-531