Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin, Inhaltsverzeichnis Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2023; 33(05): 293-307DOI: 10.1055/a-2140-9437 CME-Fortbildung Aktuelle Entwicklungen in der Orthesenversorgung für die untere Extremität Autor*innen Sebastian Benner Kim Glapa Reinhard Hoffmann Bernhard Greitemann Artikel empfehlen Abstract Artikel einzeln kaufen(opens in new window) Volltext Referenzen Literatur 1 Hohmann D, Uhlig R. Orthopädische Technik. Stuttgart: Thieme; 2005 2 Greitemann B, Baumgartner R. Technische Orthopädie. 4. Stuttgart: Thieme; 2017 3 Schwarze M, Bartsch L.P, Block J. et al. Einlagen, Knie- und Unterschenkelorthesen in der Behandlung der medialen Gonarthrose. Orthopäde 2020; 49: 449-459 4 Brüggenjürgen B, Braatz F, Greitemann B. et al. Experts’ perceived patient burden and outcomes of knee-ankle-foot-orthoses (KAFO) vs. Microprocessor-stance-and-swing-phase-controlled-knee-ankle-foot orthoses (MP-SSCO). Can Prosthet Orthot J 2022; 5: 7 5 Rafiaei M, Bahramizadeh M, Arazpour M. et al. The gait and energy efficiency of stance control knee-ankel-foot orthoses: A literature review. Prosthet Orthot Int 2016; 40: 202-214 6 Schmalz T, Pröbsting E, Auberger R. et al. A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters. Prosthet Orthot Int 2016; 40: 2077-286 25249381 7 Zacharias B, Kannenberg A. Clinical benefits of stance control orthosis systems: an analysis of the scientific literature. J Prosthet Orthot 2012; 24: 2-4 8 Pröbsting E, Kannenberg A, Zacharias B. Safety and walking ability of KAFO users with the C-Brace Orthotronic Mobility System, a new microprocessor stance and swing control orthosis. Prosthet Orthot Int 2017; 41: 65-77 27151648 9 Fior & Gentz. NEURO HiTRONIC. Zugriff am 27. September 2022 unter: www.fior-gentz.de/produkte/orthesengelenke-fuer-den-bau-einer-orthese/systemkniegelenke-fuer-orthesen/neuro-hitronic.html 10 Lonini L, Gupta A, Deems-Dluhy S. et al. Activity recognition in individuals walking with assistive devices: the benefits of device-specific models. JMIR Rehabil Assit Technol 2017; 4: e8 11 Ottobock. Beinorthese C-Brace. Zugriff am 27. September 2022 unter: www.ottobock.com/de-de/product/17KO1000=0_B 12 Kehnen M, Segl A, von Ascheberg A. et al. Laminierharze für den Leichtbau in der Technischen Orthopädie [Sonderdruck]. Orthopädie Technik 2018; 69: 52-55 13 Huckhagel T, Nüchtern J, Regelsberger J. TraumaRegister DGU. et al. Nerve trauma of the lower extremity: evaluation of 60,422 leg injured patients from the TraumaRegister DGU between 2002 and 2015. Scand J Trauma Resusc Emerg Med 2018; 26: 40 14 Vlahovic TC, Ribeiro CE, Lamm BM. et al. A case of peroneal neuropathy-induced footdrop. Correlated and compensatory lower-extremity function. Am Podiatr Med Assoc 2000; 90: 411-20 11021053 15 Van Swigchem R, Vloothuis J, den Boer J. et al. Is transcutaneous peroneal stimulation beneficial to patients with chronic stroke using an ankle-foot orthosis? A within-subjects study of patientsʼ satisfaction, walking speed and physical activity level. J Rehabil Med 2010; 42: 117-121 16 Hausdorff JM, Ring H. Effects of a new radio frequency-controlled neuroprosthesis on gait symmetry and rhythmicity in patients with chronic hemiparesis. Am J Phys Med Rehabil 2008; 87: 4-13 18158427 17 Ring H, Treger I, Gruendlinger L. et al. Neuroprosthesis for footdrop compared with an ankle-foot orthosis: effects on postural control during walking. J Stroke Cerebrovasc Dis 2009; 18: 41-47