Subscribe to RSS
DOI: 10.1055/a-2142-1643
On-site CT-derived cFFR in patients with suspected coronary artery disease: Feasibility on a 128-row CT scanner in everyday clinical practice
Nicht-invasive Vor-Ort-Quantifizierung der cFFR bei Patienten mit Verdacht auf koronare Herzkrankheit: Durchführbarkeit auf einem 128-Zeilen CT-Scanner im klinischen AlltagAbstract
Purpose Technical feasibility of CT-based calculation of fractional flow reserve (cFFR) using a 128-row computed tomography scanner in an everyday routine setting. Post-processing and everyday practicability should be analyzed on the scanner on-site in connection with clinical parameters.
Materials and Methods This single-center retrospective analysis included 230 patients (74 female; mean age 63.8 years) with CCTA within 21 months between 01/2018 and 09/2019 without non-pathological examinations. cFFR values were obtained using a deep learning-based non-commercial research prototype (cFFR Version3.5.0; Siemens Healthineers GmbH, Erlangen). cFFR values were evaluated at two points: at the maximum point of the stenosis and 1.0 cm distal to the stenosis. Comparison with invasive coronary angiography in 57/230 patients (24.7 %) was performed. CT parameters and quality were evaluated. Further subgroup classification concerning criteria of technical postprocessing was performed: no changes necessary, minor corrections necessary, major corrections necessary, and no evaluation was possible. The required time from starting the software to the final result was evaluated.
Results A total of 116/448 (25.9 %) mild, 223/448 (49.8 %) moderate, and 109/448 (24.3 %) obstructive stenoses was found. The mean cFFR at the maximum point of the stenosis was 0.92 ± 0.09 and significantly higher than the cFRR value of 0.89 ± 0.13 distal to the stenosis (p < 0.001*). The mean degree of stenosis was 44.02 ± 26.99 % (range: 1–99 %) with an area of 5.39 ± 3.30 mm2. In a total of 45 patients (19.1 %), a relevant reduction in cFFR below 0.80 was determined. Overall, in 57/230 patients (24.8 %), catheter angiography was performed. No significant difference in the degree of maximal stenosis (CAD-RADS 0–2/3/4) was detected between the classification of CCTA and ICA (p = 0.171). The mean post-processing time varied significantly with 8.34 ± 4.66 min. in single-vessel CAD vs. 12.91 ± 3.92 min. in two-vessel CAD vs. 21.80 ± 5.94 min. in three-vessel CAD (each p < 0.001).
Conclusion Noninvasive onsite quantification of cFFR is feasible with minimal observer interaction in a routine real-world setting on a 128-row scanner. Deep learning-based algorithms allow a robust and semi-automatic on-site determination of cFFR based on data from standard CT scanners.
Key Points:
-
Non-invasive on-site quantification of cFFR is feasible with minimal observer interaction.
-
Deep-learning based algorithms allow robust and semi-automatic on-site determination of cFFR.
-
The mean follow-up time varied significantly with the extent of vascular CAD.
Zusammenfassung
Ziel Implementierung der technischen Machbarkeit von cFFR mittels eines 128-Zeilen-Computertomographen in der alltäglichen Routine. Nachbearbeitung und Alltagstauglichkeit sollen am Gerät vor Ort in Zusammenschau mit klinischen Parametern analysiert werden.
Material und Methoden Diese retrospektive Single-Center-Studie umfasste 230 Patienten (74 weiblich; Durchschnittsalter 63,8 Jahre) mit CCTA innerhalb von 21 Monaten zwischen 01/2018 und 09/2019. Es wurden nur Patienten mit KHK-Befunden eingeschlossen. Die cFFR-Werte wurden mit einem auf Deep Learning basierenden nicht-kommerziellen Forschungsprototyp (cFFR Version3.5.0; Siemens Healthineers GmbH, Erlangen) ermittelt. Die cFFR-Werte wurden an zwei Punkten ausgewertet: am Maximum einer Stenose und 1,0 cm distal der Stenose. Ein Vergleich mit der invasiven Koronarangiographie wurde bei 57/230 Patienten (24,7 %) durchgeführt. Es erfolgte eine weitere Untergruppeneinteilung nach dem Aufwand des Postprocessings: keine Änderungen erforderlich, geringfügige Korrekturen erforderlich, größere Korrekturen erforderlich und keine Auswertung möglich. Bewertet wurde zusätzlich die benötigte Zeit vom Start der Software bis zum Endergebnis.
Ergebnisse Insgesamt wurden 116/448 (25,9 %) leichte, 223/448 (49,8 %) mittelschwere und 109/448 (24,3 %) obstruktive Stenosen gefunden. Der mittlere cFFR-Wert am Maximum der Stenose betrug 0,92 ± 0,09 und war signifikant höher als der cFFR-Wert 0,89 ± 0,13 distal der Stenose (p < 0,001*), wobei eine signifikante Korrelation zwischen beiden Werten zu verzeichnen ist (r = 0,966, p = 0,001*). Der mittlere Stenosegrad betrug 44,02 ± 26,99 % (Range 1–99 %) mit einer Fläche von 5,39 ± 3,30 mm2. Bei insgesamt 45 Patienten (19,1 %) wurde eine relevante Verringerung der cFFR unter 0,80 festgestellt. Insgesamt wurde bei 57/230 Patienten (24,8 %) eine Katheterangiographie durchgeführt. Es wurde kein signifikanter Unterschied zwischen dem Grad der maximalen Stenose (CAD-RADS 0–2/3/4) zwischen der Klassifizierung von CCTA und ICA festgestellt (p = 0,171). Die mittlere Nachbearbeitungszeit zeigte signifikante Unterschiede mit 8,34 ± 4,66 min bei Ein-Gefäß-KHK vs. 12,91 ± 3,92 min bei Zwei-Gefäß-KHK vs. 21,80 ± 5,94 min bei Drei-Gefäß-KHK (jeweils p < 0,001).
Schlussfolgerung Die nicht-invasive Vor-Ort-Quantifizierung der cFFR ist mit minimaler Nachbearbeitung des Untersuchers im Alltag auf einem 128-Zeilen-Scanner für die cFFR möglich. DL-basierte Algorithmen ermöglichen eine robuste und halbautomatische Vor-Ort-Bestimmung der cFFR auf Daten von Standard-CT-Scannern.
Kernaussagen:
-
Die nicht-invasive Vor-Ort-Qunatifizierung der cFFR ist mit minimalem Nachbearbeitungsaufwand möglich.
-
Deep-Learning-basierte Algorithmen ermöglichen eine robuste und halbautomatische Bestimmung des cFFR vor Ort.
-
Die Nachbearbeitungszeit variiert signifikant je nach Ausmaß der KHK.
Zitierweise
-
Baumeister T, Kloth C, Schmidt S et al. On-site CT-derived cFFR in patients with suspected coronary artery disease: Feasibility on a 128-row CT scanner. Fortschr Röntgenstr 2024; 196: 62 – 71
Publication History
Received: 27 November 2022
Accepted: 11 July 2023
Article published online:
11 October 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Lucas FL, DeLorenzo MA, Siewers AE. et al. Temporal trends in the utilization of diagnostic testing and treatments for cardiovascular disease in the United States, 1993-2001. Circulation 2006; 113 (03) 374-379
- 2 Pontone G, WeirMcCall JR, Baggiano A. et al. Determinants of rejection rate for coronary CT angiography fractional flow reserve analysis. Radiology 2019; 292 (03) 597-605
- 3 Miller JM, Rochitte CE, Dewey M. et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 2008; 359 (22) 2324-2336
- 4 Meijboom WB, Meijs MFL, Schuijf JD. et al. Diagnostic Accuracy of 64-Slice Computed Tomography Coronary Angiography. A Prospective, Multicenter, Multivendor Study. J Am Coll Cardiol 2008; 52 (25) 2135-2144
- 5 Li Y, Yu M, Dai X. et al. Detection of hemodynamically significant coronary stenosis: CT Myocardial Perfusion versus Machine Learning CT Fractional Flow Reserve. Radiology 2019; 293 (02) 305-314
- 6 Chang HJ, Lin FY, Lee SE. et al. Coronary Atherosclerotic Precursors of Acute Coronary Syndromes. J Am Coll Cardiol 2018; 71 (22) 2511-2522
- 7 Mori H, Torii S, Kutyna M. et al. Coronary Artery Calcification and its Progression: What Does it Really Mean?. JACC: Cardiovascular Imaging 2018; 11 (01) 127-142
- 8 Van Rosendael AR, Narula J, Lin FY. et al. Association of High-Density Calcified 1K Plaque with Risk of Acute Coronary Syndrome. JAMA Cardiology 2020; 5 (03) 282-290
- 9 Zhuang B, Wang S, Zhao S. et al. Computed tomography angiography-derived fractional flow reserve (CT-FFR) for the detection of myocardial ischemia with invasive fractional flow reserve as reference: systematic review and meta-analysis. Eur Radiol 2020; 30 (02) 712-725
- 10 Asher A, Singhal A, Thornton G. et al. FFRCT derived from computed tomography angiography: the experience in the UK. Expert Review of Cardiovascular Therapy 2018; 16 (12) 919-929
- 11 Min JK, Taylor CA, Achenbach S. et al. Noninvasive Fractional Flow Reserve Derived From Coronary CT Angiography: Clinical Data and Scientific Principles. JACC: Cardiovascular Imaging 2015; 8 (10) 1209-1222
- 12 Xaplanteris P, Fournier S, Pijls NHJ. et al. Five-year outcomes with PCI guided by fractional flow reserve. N Engl J Med 2018; 379 (03) 250-259
- 13 De Bruyne B, Pijls NHJ, Kalesan B. et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 2012; 367 (11) 991-1001
- 14 Gassenmaier S, Tsiflikas I, Greulich S. et al. Prevalence of pathological FFRCT values without coronary artery stenosis in an asymptomatic marathon runner cohort. Eur Radiol 2021; 31 (12) 8975-8982
- 15 Tonino PAL, De Bruyne B, Pijls NHJ. et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009; 360 (03) 213-224
- 16 Tesche C, Cecco CND, Albrecht MH. et al. Coronary CT Angiography-derived Fractional Flow Reserve. Radiology 2017; 285 (01) 17-33
- 17 Ihdayhid AR, Norgaard BL, Gaur S. et al. Prognostic value and risk continuum of noninvasive fractional flow reserve derived from coronary CT angiography. Radiology 2019; 292 (02) 343-351
- 18 Lu MT, Ferencik M, Roberts RS. et al. Noninvasive FFR Derived From Coronary CT Angiography: Management and Outcomes in the PROMISE Trial. JACC: Cardiovasc Imaging 2017; 10 (11) 1350-1358
- 19 Shi K, Yang FF, Si N. et al. Effect of 320-row CT reconstruction technology on fractional flow reserve derived from coronary CT angiography based on machine learning: single- versus multiple-cardiac periodic images. Quant Imaging Med Surg 2022; 12 (06) 3092-3103
- 20 Lu MT, Ferencik M, Roberts RS. et al. Noninvasive FFR Derived From Coronary CT Angiography: Management and Outcomes in the PROMISE Trial. JACC: Cardiovascular Imaging 2017; 10 (11) 1350-1358
- 21 Koo BK, Erglis A, Doh JH. et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 2011; 58 (19) 1989-1997
- 22 Min JK, Leipsic J, Pencina MJ. et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA – Journal of the American Medical Association 2012; 308 (12) 1237-1245
- 23 Dey D, Lin A. Machine-Learning CT-FFR and Extensive Coronary Calcium: Overcoming the Achilles Heel of Coronary Computed Tomography Angiography. Jacc: Cardiovascular Imaging 2020; 13 (03) 771-773
- 24 Martin SS, Mastrodicasa D, van Assen M. et al. Value of Machine Learning–based Coronary CT Fractional Flow Reserve Applied to Triple-Rule-Out CT Angiography in Acute Chest Pain. Radiology: Cardiothoracic Imaging 2020; 2 (03) e190137
- 25 Tesche C, De Cecco CN, Baumann S. et al. Coronary CT angiography-derived fractional flow reserve: Machine learning algorithm versus computational fluid dynamics modeling. Radiology 2018; 288 (01) 64-72
- 26 Coenen A, Lubbers MM, Kurata A. et al. Fractional flow reserve computed from noninvasive CT angiography data: Diagnostic performance of an on-site clinicianoperated computational fluid dynamics algorithm. Radiology 2014; 274 (03) 674-683
- 27 Norgaard BL, Leipsic J, Gaur S. et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: The NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 2014; 63 (12) 1145-1155
- 28 Nakanishi R, Matsumoto S, Alani A. et al. Diagnostic performance of transluminal attenuation gradient and fractional flow reserve by coronary computed tomographic angiography (FFR(CT)) compared to invasive FFR: a sub-group analysis from the DISCOVER-FLOW and DeFACTO studies. The International Journal of Cardiovascular Imaging 2015; 31 (06) 1251-1259
- 29 Raja J, Seitz MP, Yedlapati N. et al. Can Computed Fractional Flow Reserve Coronary CT Angiography (FFRCT) Offer an Accurate Noninvasive Comparison to Invasive Coronary Angiography (ICA)? “The Noninvasive CATH.” A Comprehensive Review. Curr Probl Cardiol 2021; 46 (03) 100642
- 30 Coenen A, Rossi A, Lubbers MM. et al. Integrating CT Myocardial Perfusion and CT-FFR in the Work-Up of Coronary Artery Disease. Jacc: Cardiovascular Imaging 2017; 10 (07) 760-770
- 31 Zhu X, Pang Z, Jiang W. et al. Synergistic prognostic value of coronary distensibility index and fractional flow reserve based cCTA for major adverse cardiac events in patients with Coronary artery disease. BMC Cardiovascular Disorders 2022; 22 (01) 220
- 32 Xue Y, Zheng MW, Hou Y. et al. Influence of diabetes mellitus on the diagnostic performance of machine learning-based coronary CT angiography-derived fractional flow reserve: a multicenter study. Eur Radiol 2022; 32 (06) 3778-3789
- 33 Mrgan M, Norgaard BL, Dey D. et al. Coronary flow impairment in asymptomatic patients with early stage type-2 diabetes: Detection by FFRCT . Diabetes & Vascular Disease Research 2020; 17 (09) 1479164120958422
- 34 Nozaki YO, Fujimoto S, Kawaguchi YO. et al. Prognostic value of the optimal measurement location of on-site CT-derived fractional flow reserve. J Cardiol 2022; 80 (01) 14-21
- 35 Kueh SH, Mooney J, Ohana M. et al. Fractional flow reserve derived from coronary computed tomography angiography reclassification rate using value distal to lesion compared to lowest value. Journal of cardiovascular computed tomography 2017; 11 (06) 462-467
- 36 Yun C, Hung C, Wen M. et al. CT Assessment of Myocardial Perfusion and Fractional Flow Reserve in Coronary Artery Disease: A Review of Current Clinical Evidence and Recent Developments. Korean Journal of Radiology 2021; 22 (11) 1749-1763
- 37 Gao Y, Zhao N, Song L. et al. Diagnostic Performance of CT FFR With a New Parameter Optimized Computational Fluid Dynamics Algorithm From the CT-FFR-CHINA Trial: Characteristic Analysis of Gray Zone Lesions and Misdiagnosed Lesions. Frontiers in Cardiovascular Medicine 2022; 9: 819460
- 38 Chua A, Ihdayhid A, Linde JJ. et al. Diagnostic Performance of CT-Derived Fractional Flow Reserve in Australian Patients Referred for Invasive Coronary Angiography. Heart, Lung & Circulation 2022; 31 (08) 1102-1109
- 39 Mickley H, Veien KT, Gerke O. et al. Diagnostic and Clinical Value of FFRCT in Stable Chest Pain Patients With Extensive Coronary Calcification: The FACC Study. Jacc: Cardiovascular Imaging 2022; 15 (06) 1046-1058
- 40 Tesche C, Otani K, De Cecco CN. et al. Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR: Results From MACHINE Registry. Jacc: Cardiovascular Imaging 2020; 13 (03) 760-770
- 41 Hamilton MCK, Charters PFP, Lyen S. et al. Computed tomography-derived fractional flow reserve (FFRCT) has no additional clinical impact over the anatomical Coronary Artery Disease – Reporting and Data System (CAD-RADS) in real-world elective healthcare of coronary artery disease. Clin Radiol 2022;