Subscribe to RSS
DOI: 10.1055/a-2143-7233
Novel ultrasonic imaging of the brain and its vasculature: the long way to clinical guideline recommendation
Article in several languages: English | deutschThe classical ultrasound modalities used nowadays in clinical routine for imaging of the brain and its vasculature were pioneered in the 1960s (B-mode) and 1980s (color Doppler) [1] [2] [3] [4] [5] [6] [7], however, became part of clinical standard recommendations and guidelines not before the late 1990s [8] [9] [10] [11] [12]. An important reason for the delay in transferring transcranial B-mode sonography (TCS) and transcranial color-coded duplex sonography (TCCS) into clinical routine was the competition with the in-parallel evolving CT and MRI techniques that enable complete brain and (static) vasculature scans in short time and highly reproducible manner, unlike transcranial ultrasound [13]. The limitation of ultrasound image quality by the cranial bone accounted for the relatively long dominance of one-dimensional echo-encephalography (A-scan) over two-dimensional (B-mode) scan, and of conventional transcranial Doppler sonography over TCCS, despite their early availability and comparative evaluation [14] [15] [16]. This is different in infants in whom the intracranial structures can be visualized ultrasonically with high image resolution through open fontanelles, allowing even for the assessment of cerebral cortex and bridging veins as is elegantly demonstrated using a 14-MHz transducer in the case reported by K.H. Deeg in the present issue of Ultraschall in der Medizin [17]. Also, cranial bone surface can well be assessed with high-frequency ultrasound, as is nicely shown using a 11-MHz transducer in the study of Pogliani et al. (this issue) [18]. Transcranial sonography, however, requires lower ultrasound frequencies of around 2.5 MHz in adolescents and adults to penetrate the bone which limits image resolution. Despite this drawback, image resolution on TCS reached a remarkable level already in the 2000s thanks to technological advances, allowing for relatively high resolution of echogenic deep brain structures in the focal zone of transducer [19]. The recent boom of therapeutic transcranial focused ultrasound (tFUS), applied e. g. for the treatment of essential tremor, has boosted the efforts in individualized optimization of transcranial ultrasound penetration which may also benefit the diagnostic TCS and TCCS technologies in near future [20].
Publication History
Article published online:
13 October 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 de Vlieger M. Evolution of echo-encephalography in neurology – a review. Ultrasonics 1967; 5: 91-97
- 2 Shkolnik A. B-mode scanning of the infant brain. A new approach case report. Craniopharyngioma. J Clin Ultrasound 1975; 3 (03) 229-231
- 3 Black KL, Rubin JM, Chandler WF. et al. Intraoperative color-flow Doppler imaging of AVM's and aneurysms. J Neurosurg 1988; 68 (04) 635-639
- 4 Mitchell DG, Merton D, Needleman L. et al. Neonatal brain: color Doppler imaging. Part I. Technique and vascular anatomy. Radiology 1988; 167 (02) 303-306
- 5 Schöning M, Grunert D, Stier B. Transcranial duplex sonography through intact bone: a new diagnostic procedure. Ultraschall in Med 1989; 10 (02) 66-71
- 6 Becker G, Winkler J, Bogdahn U. Transcranial color-coded real-time sonography in the adult. 1: Normal findings and cerebrovascular ischemia. Ultraschall in Med 1991; 12 (02) 74-79
- 7 Kaps M, Seidel G, Bauer T. et al. Imaging of the intracranial vertebrobasilar system using color-coded ultrasound. Stroke 1992; 23 (11) 1577-1582
- 8 Deeg KH, Staudt F, von Rohden L. Classification of intracranial hemorrhage in premature infants. Ultraschall in Med 1999; 20 (04) 165-170
- 9 Ment LR, Bada HS, Barnes P. et al. Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2002; 58 (12) 1726-1738
- 10 Sloan MA, Alexandrov AV, Tegeler CH. et al. Assessment: transcranial Doppler ultrasonography: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2004; 62 (09) 1468-1481
- 11 European Stroke Organisation (ESO) Executive Committee; ESO Writing Committee. Guidelines for management of ischaemic stroke and transient ischaemic attack 2008. Cerebrovasc Dis 2008; 25 (05) 457-507
- 12 Berardelli A, Wenning GK, Antonini A. et al. EFNS/MDS-ES/ENS recommendations for the diagnosis of Parkinson's disease. Eur J Neurol 2013; 20 (01) 16-34
- 13 Hoksbergen AW, Legemate DA, Ubbink DT. et al. Success rate of transcranial color-coded duplex ultrasonography in visualizing the basal cerebral arteries in vascular patients over 60 years of age. Stroke 1999; 30 (07) 1450-1455
- 14 de Vlieger M. Evaluation of echoencephalography. J Clin Ultrasound 1980; 8 (01) 39-47
- 15 Bartels E. Transcranial color-coded duplex ultrasound--possibilities and limits of this method in comparison with conventional transcranial Doppler ultrasound. Ultraschall in Med 1993; 14 (06) 272-278
- 16 Krejza J, Swiat M, Pawlak MA. et al. Suitability of temporal bone acoustic window: conventional TCD versus transcranial color-coded duplex sonography. J Neuroimaging 2007; 17 (04) 311-314
- 17 Deeg KH. Subcortical Lacerations, a Significant Sign of Shaken Baby Syndrome – Diagnosis with High-Resolution Duplex Sonography. Ultraschall in Med 2023;
- 18 Pogliani LM, Zuccotti GV, Reggiori M. et al. Surface Cranial Ultrasound: The Natural Heir to X-Ray for the Screening of Skull Deformities in Infants. Ultraschall in Med 2023;
- 19 Walter U, Kanowski M, Kaufmann J. et al. Contemporary ultrasound systems allow high-resolution transcranial imaging of small echogenic deep intracranial structures similarly as MRI: a phantom study. Neuroimage 2008; 40 (02) 551-558
- 20 Mazzotti M, Kohtanen E, Erturk A. et al. Optimizing transcranial ultrasound delivery at large incident angles by leveraging cranial leaky guided wave dispersion. Ultrasonics 2023; 128: 106882
- 21 Gröschel K, Harrer JU, Schminke U. et al. Ultrasound assessment of brain supplying arteries (transcranial). Ultraschall in Med 2023;
- 22 Pinto MJ, Schon M, Sousa J. et al. Ultrasonographic Vasospasm and Outcome of Posterior Reversible Encephalopathy and Cerebral Vasoconstriction Syndromes. Ultraschall in Med 2023;
- 23 Kozel J, Školoudík D, Ressner P. et al. Echogenicity of Brain Structures in Huntingtonʼs Disease Patients Evaluated by Transcranial Sonography – Magnetic Resonance Fusion Imaging using Virtual Navigator and Digital Image Analysis. Ultraschall in Med 2023;
- 24 Ophir J, Parker KJ. Contrast agents in diagnostic ultrasound. Ultrasound Med Biol 1989; 15 (04) 319-333
- 25 Bogdahn U, Becker G, Schlief R. et al. Contrast-enhanced transcranial color-coded real-time sonography. Results of a phase-two study. Stroke 1993; 24 (05) 676-684
- 26 Allendoerfer J, Tanislav C. Diagnostic and prognostic value of contrast-enhanced ultrasound in acute stroke. Ultraschall in Med 2008; 29 (Suppl. 04) S210-S214
- 27 Schlachetzki F, Herzberg M, Hölscher T. et al. Transcranial ultrasound from diagnosis to early stroke treatment: part 2: prehospital neurosonography in patients with acute stroke: the Regensburg stroke mobile project. Cerebrovasc Dis 2012; 33 (03) 262-271
- 28 Llompart-Pou JA, Abadal JM, Velasco J. et al. Contrast-enhanced transcranial color sonography in the diagnosis of cerebral circulatory arrest. Transplant Proc 2009; 41 (05) 1466-1468
- 29 Walter U, Schreiber SJ, Kaps M. Doppler and Duplex Sonography for the Diagnosis of the Irreversible Cessation of Brain Function ("Brain Death"): Current Guidelines in Germany and Neighboring Countries. Ultraschall in Med 2016; 37 (06) 558-578
- 30 Prada F, Del Bene M, Saini M. et al. Intraoperative cerebral angiosonography with ultrasound contrast agents: how I do it. Acta Neurochir (Wien) 2015; 157 (06) 1025-1029
- 31 Postert T, Muhs A, Meves S. et al. Transient response harmonic imaging: an ultrasound technique related to brain perfusion. Stroke 1998; 29 (09) 1901-1907
- 32 Seidel G, Meairs S. Ultrasound contrast agents in ischemic stroke. Cerebrovasc Dis 2009; 27 (Suppl. 02) 25-39
- 33 van Leyen K, Klötzsch C, Harrer JU. Brain tumor imaging with transcranial sonography: state of the art and review of the literature. Ultraschall in Med 2011; 32 (06) 572-581
- 34 Eyding J, Fung C, Niesen WD. et al. Twenty Years of Cerebral Ultrasound Perfusion Imaging-Is the Best yet to Come?. J Clin Med 2020; 9 (03) 816
- 35 Prada F, Perin A, Martegani A. et al. Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery 2014; 74 (05) 542-552
- 36 Kastler A, Manzoni P, Chapuy S. et al. Transfontanellar contrast enhanced ultrasound in infants: initial experience. J Neuroradiol 2014; 41 (04) 251-258
- 37 Freeman CW, Hwang M. Advanced Ultrasound Techniques for Neuroimaging in Pediatric Critical Care: A Review. Children (Basel) 2022; 9 (02) 170
- 38 Merz E. Use of 3D ultrasound technique in prenatal diagnosis. Ultraschall in Med 1995; 16 (04) 154-161
- 39 Araujo Júnior E, Leite AP, Pires CR. et al. Postnatal evaluation of schizencephaly by transfontanellar three-dimensional sonography. J Clin Ultrasound 2007; 35 (06) 351-355
- 40 Chen Z, Ma Y, Wen H. et al. Sonographic demonstration of sulci and gyri on the convex surface in normal fetus using 3D-ICRV rendering technology. Ultraschall in Med 2023;
- 41 Yilmaz R, Granert O, Schäffer E. et al. Transcranial Sonography Findings in Alzheimer's Disease: A New Imaging Biomarker. Ultraschall in Med 2021; 42 (06) 623-633
- 42 Lindseth F, Kaspersen JH, Ommedal S. et al. Multimodal image fusion in ultrasound-based neuronavigation: improving overview and interpretation by integrating preoperative MRI with intraoperative 3D ultrasound. Comput Aided Surg 2003; 8 (02) 49-69
- 43 Laganà MM, Forzoni L, Viotti S. et al. Assessment of the cerebral venous system from the transcondylar ultrasound window using virtual navigator technology and MRI. Annu Int Conf IEEE Eng Med Biol Soc 2011; 2011: 579-582
- 44 Prada F, Del Bene M, Mattei L. et al. Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery. Ultraschall in Med 2015; 36 (02) 174-186
- 45 Ganau M, Ligarotti GK, Apostolopoulos V. Real-time intraoperative ultrasound in brain surgery: neuronavigation and use of contrast-enhanced image fusion. Quant Imaging Med Surg 2019; 9 (03) 350-358
- 46 Walter U, Müller JU, Rösche J. et al. Magnetic resonance-transcranial ultrasound fusion imaging: A novel tool for brain electrode location. Mov Disord 2016; 31 (03) 302-309
- 47 Sporea I, Sirli RL. Hepatic elastography for the assessment of liver fibrosis--present and future. Ultraschall in Med 2012; 33 (06) 550-558
- 48 Chan HW, Pressler R, Uff C. et al. A novel technique of detecting MRI-negative lesion in focal symptomatic epilepsy: intraoperative ShearWave elastography. Epilepsia 2014; 55 (04) e30-e33
- 49 Chauvet D, Imbault M, Capelle L. et al. In Vivo Measurement of Brain Tumor Elasticity Using Intraoperative Shear Wave Elastography. Ultraschall in Med 2016; 37 (06) 584-590
- 50 Meiser N, Panek A, Treppels-Kottek S. et al. Einsatz der Scherwellen Elastografie (SWE) zur Beurteilung intrakranieller Druckverhältnisse bei gesunden Säuglingen und Säuglingen mit Hydrocephalus – eine Machbarkeitsstudie. RöFo 2017; 189 (Suppl. 01) S50
- 51 Albayrak E, Kasap T. Evaluation of Neonatal Brain Parenchyma Using 2-Dimensional Shear Wave Elastography. J Ultrasound Med 2018; 37 (04) 959-967
- 52 Fowlkes JB. Safety considerations for shear-wave elastography of the infant brain. Pediatr Radiol 2020; 50 (07) 905-906
- 53 Dietrich CF, Ferraioli G, Sirli R. et al. General advice in ultrasound based elastography of pediatric patients. Med Ultrason 2019; 21 (03) 315-326
- 54 Ertl M, Raasch N, Hammel G. et al. Transtemporal Investigation of Brain Parenchyma Elasticity Using 2-D Shear Wave Elastography: Definition of Age-Matched Normal Values. Ultrasound Med Biol 2018; 44 (01) 78-84
- 55 Ertl M, Woeckel M, Maurer C. Differentiation Between Ischemic and Hemorrhagic Strokes – A Pilot Study with Transtemporal Investigation of Brain Parenchyma Elasticity Using Ultrasound Shear Wave Elastography. Ultraschall in Med 2021; 42 (01) 75-83
- 56 Tzschätzsch H, Kreft B, Schrank F. et al. In vivo time-harmonic ultrasound elastography of the human brain detects acute cerebral stiffness changes induced by intracranial pressure variations. Sci Rep 2018; 8 (01) 17888
- 57 Machado P, Segal S, Lyshchik A. et al. A Novel Microvascular Flow Technique: Initial Results in Thyroids. Ultrasound Q 2016; 32 (01) 67-74
- 58 Ishikawa M, Ota Y, Nagai M. et al. Ultrasonography Monitoring with Superb Microvascular Imaging Technique in Brain Tumor Surgery. World Neurosurg 2017; 97: 749.e11-749.e20
- 59 Goeral K, Hojreh A, Kasprian G. et al. Microvessel ultrasound of neonatal brain parenchyma: feasibility, reproducibility, and normal imaging features by superb microvascular imaging (SMI). Eur Radiol 2019; 29 (04) 2127-2136
- 60 Valaikiene J, Schlachetzki F, Azevedo E. et al. Point-of-Care Ultrasound in Neurology – Report of the EAN SPN/ESNCH/ERcNsono Neuro-POCUS Working Group. Ultraschall in Med 2022; 43 (04) 354-366