Pneumologie 2023; 77(11): 854-861
DOI: 10.1055/a-2145-4648
Übersicht

Die neue Definition und Klassifikation der pulmonalen Hypertonie

New definition and classification of pulmonary hypertension
Philipp Douschan
 1   Division of Pulmonology, Department of Internal Medicine, Medical University of Graz and Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
 2   Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
,
Benjamin Egenlauf
 3   Zentrum für Pulmonale Hypertonie, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Germany
 4   Abteilung für Pneumologie und Beatmungsmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Germany
 5   Translational Lung Research Center Heidelberg (TLRC), Member of the German Centre for Lung Research (DZL), Heidelberg, Germany
,
Henning Gall
 2   Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
,
Ekkehard Grünig
 3   Zentrum für Pulmonale Hypertonie, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Germany
 5   Translational Lung Research Center Heidelberg (TLRC), Member of the German Centre for Lung Research (DZL), Heidelberg, Germany
,
Alfred Hager
 7   Department for Congenital Heart Disease and Paediatric Cardiology, Deutsches Herzzentrum München, Technical University of Munich, Munich, Germany
,
Melanie Heberling
 8   Universitätsklinikum Carl Gustav Carus an der TU Dresden, Med. Klinik I, Bereich Pneumologie, Dresden, Deutschland
,
Thomas Koehler
 9   Universitätsklinikum Freiburg, Department Innere Medizin, Klinik für Pneumologie, Freiburg, Deutschland
,
Horst Olschewski
 1   Division of Pulmonology, Department of Internal Medicine, Medical University of Graz and Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
,
Hans-Jürgen Seyfarth
10   Department of Pneumology, Medical Clinic II, University Hospital of Leipzig, Leipzig, Germany
,
Athiththan Yogeswaran
 2   Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
,
Silvia Ulrich
11   Klinik für Pneumologie, Universitätsspital Zürich, Zürich, Schweiz
,
Gabor Kovacs
 1   Division of Pulmonology, Department of Internal Medicine, Medical University of Graz and Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
› Institutsangaben

Zusammenfassung

In der Neufassung der ESC/ERS-Leitlinien 2022 zur pulmonalen Hypertonie (PH) kam es zu wesentlichen Änderungen in der hämodynamischen Definition sowie zu einer weiteren Verfeinerung in der Klassifikation des Lungenhochdrucks.

Als bedeutende Neuerung gilt die Einführung eines neuen Grenzwerts des mittleren pulmonalarteriellen Druckes (mPAP) für die Definition der PH. Eine PH wird nun durch eine Erhöhung des mPAP > 20 mmHg, ermittelt durch Rechtsherzkatheter, definiert. Des Weiteren wurde der Grenzwert des pulmonalen Gefäßwiderstands (PVR) zur Definition einer präkapillären PH verringert. Eine präkapilläre PH liegt nun bereits ab einem PVR > 2 WU und einem pulmonalarteriellen Verschlussdruck (PAWP) ≤ 15 mmHg vor. Die zunehmende Evidenz für die klinische Relevanz der pulmonalen Belastungshämodynamik führte schließlich auch zur Wiederaufnahme des Belastungs-PH-Terminus in die Leitlinien. Die Belastungs-PH wird als Verhältnis zum Herzzeitvolumen (CO) über einen pathologischen mPAP/CO-Slope > 3 mmHg/L/min definiert. In der Klassifikation werden weiterhin fünf Gruppen unterschieden: die pulmonalarterielle Hypertonie (Gruppe 1), PH assoziiert mit Linksherzerkrankungen (Gruppe 2), PH assoziiert mit Lungenerkrankungen und/oder Hypoxie (Gruppe 3), PH assoziiert mit pulmonalarterieller Obstruktion (Gruppe 4) und PH mit unklaren und/oder multifaktoriellen Mechanismen (Gruppe 5).

In der folgenden Leitlinienübersetzung soll auf die Neuerungen eingegangen, deren Hintergründe näher beleuchtet und mögliche Schwierigkeiten in ihrer klinischen Anwendung diskutiert werden.

Abstract

In the recent ESC/ERS guidelines on the diagnosis and management of pulmonary hypertension (PH) several important changes have been made in respect of the definition and classification of PH.

The mPAP cut-off for defining PH was lowered. PH is now defined by an mPAP > 20 mmHg assessed by right heart catheterization. Moreover, the PVR threshold for defining precapillary PH was lowered. Precapillary PH is now defined by a PVR > 2 WU and a pulmonary arterial wedge pressure (PAWP) ≤ 15 mmHg. Furthermore, the increasing evidence for the clinical relevance of pulmonary exercise hemodynamics led to the reintroduction of exercise pulmonary hypertension (EPH) [1]. EPH is characterized by a mPAP/CO-slope > 3 mmHg/L/min during exercise testing. In the classification of PH five groups are distinguished: Pulmonary arterial hypertension (group 1), PH associated with left heart disease (group 2), PH associated with lung diseases and/or hypoxia (Group 3), PH associated with pulmonary artery obstructions (group 4) and PH with unclear and/or multi-factorial mechanisms (group 5).

In the following guideline-translation we focus on novel aspects regarding the definition and classification of PH and to provide additional background information.



Publikationsverlauf

Artikel online veröffentlicht:
14. November 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Maron BA. et al. Association of Borderline Pulmonary Hypertension With Mortality and Hospitalization in a Large Patient Cohort: Insights From the Veterans Affairs Clinical Assessment, Reporting, and Tracking Program. Circulation 2016; 133: 1240-1248
  • 2 Kovacs G. et al. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 2009; 34: 888-894
  • 3 Kovacs G. et al. Pulmonary vascular resistances during exercise in normal subjects: a systematic review. Eur Respir J 2012; 39: 319-328
  • 4 Wolsk E. et al. The Influence of Age on Hemodynamic Parameters During Rest and Exercise in Healthy Individuals. JACC Heart Fail 2017; 5: 337-346
  • 5 Douschan P. et al. Mild Elevation of Pulmonary Arterial Pressure as a Predictor of Mortality. Am J Respir Crit Care Med 2018; 197: 509-516
  • 6 Kolte D. et al. Mild Pulmonary Hypertension Is Associated With Increased Mortality: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2018; 7: e009729
  • 7 Nathan SD. et al. Pulmonary hypertension in chronic lung disease and hypoxia. Eur Respir J 2019; 53: 1801914
  • 8 Valerio CJ. et al. Borderline mean pulmonary artery pressure in patients with systemic sclerosis: transpulmonary gradient predicts risk of developing pulmonary hypertension. Arthritis Rheum 2013; 65: 1074-1084
  • 9 Pan Z, Marra AM, Benjamin N. et al. Early treatment with Ambrisentan of mildly elevated mean pulmonary arterial pressure associated with systemic sclerosis: a randomized, controlled, doubleblind, parallel group study (EDITA-Study). Arthritis Res Ther 2019; accepted for publication.
  • 10 Hoeper MM. et al. A global view of pulmonary hypertension. Lancet Respir Med 2016; 4: 306-322
  • 11 Maron BA. et al. Pulmonary vascular resistance and clinical outcomes in patients with pulmonary hypertension: a retrospective cohort study. Lancet Respir Med 2020; 8: 873-884
  • 12 Xanthouli P. et al. Haemodynamic phenotypes and survival in patients with systemic sclerosis: the impact of the new definition of pulmonary arterial hypertension. Ann Rheum Dis 2020; 79: 370-378
  • 13 Berlier C. et al. Influence of Upright Versus Supine Position on Resting and Exercise Hemodynamics in Patients Assessed for Pulmonary Hypertension. J Am Heart Assoc 2022; 11: e023839
  • 14 Duknic M. et al. Comparison of Repetitive Cardiac Output Measurements at Rest and End-Exercise by Direct Fick Using Pulse Oximetry vs. Blood Gases in Patients With Pulmonary Hypertension. Front Med (Lausanne) 2021; 8: 776956
  • 15 Paulus WJ. et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 2007; 28: 2539-2550
  • 16 Pieske B. et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 2019; 40: 3297-3317
  • 17 Zeder K. et al. Diagnostic, prognostic and differential-diagnostic relevance of pulmonary haemodynamic parameters during exercise: a systematic review. Eur Respir J 2022; 60: 2103181
  • 18 Ho JE. et al. Exercise Pulmonary Hypertension Predicts Clinical Outcomes in Patients With Dyspnea on Effort. J Am Coll Cardiol 2020; 75: 17-26
  • 19 Lewis GD. et al. Pulmonary vascular response patterns during exercise in left ventricular systolic dysfunction predict exercise capacity and outcomes. Circ Heart Fail 2011; 4: 276-285
  • 20 Zeder K. et al. Exercise Pulmonary Resistances Predict Long-Term Survival in Systemic Sclerosis. Chest 2021; 159: 781-790
  • 21 Stamm A. et al. Exercise pulmonary haemodynamics predict outcome in patients with systemic sclerosis. Eur Respir J 2016; 48: 1658-1667
  • 22 Hasler ED. et al. Pressure-Flow During Exercise Catheterization Predicts Survival in Pulmonary Hypertension. Chest 2016; 150: 57-67
  • 23 Eisman AS. et al. Pulmonary Capillary Wedge Pressure Patterns During Exercise Predict Exercise Capacity and Incident Heart Failure. Circ Heart Fail 2018; 11: e004750
  • 24 Bentley RF. et al. Normal and Abnormal Relationships of Pulmonary Artery to Wedge Pressure During Exercise. J Am Heart Assoc 2020; 9: e016339
  • 25 Galie N. et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2009; 34: 1219-1263
  • 26 Kovacs G. et al. An official European Respiratory Society statement: pulmonary haemodynamics during exercise. Eur Respir J 2017; 50: 1700578
  • 27 Galiè N. et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J 2015; 46: 903-975
  • 28 Simonneau G. et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019; 53: 1801913