Subscribe to RSS
DOI: 10.1055/a-2145-8697
Aminoacylation of Alkenes by Cooperative NHC and Photoredox Catalysis
This work was funded by the Deutsche Forschungsgemeinschaft (DFG) (German Research Foundation) (GRK 2678 – 437785492) and the Verband der Chemischen Industrie e.V. (VCI) (Ph.D. fellowship to L.L.).
Abstract
Cooperative NHC and photoredox catalysis has gained significant attention as an emerging research field in recent years. Herein, we report a cyclizing aminoacylation of alkenes, which is enabled through the combination of these two catalytic modes. The key step is a radical/radical cross-coupling between a persistent ketyl radical and a transient benzylic or aliphatic C-radical, which is generated through radical cyclization of an oxidatively formed amidyl radical. Several carbamates, amides and sulfonamides containing an alkene moiety and different acyl fluorides can be used as substrates. The resulting products are obtained in moderate to good yields.
Key words
NHC catalysis - photoredox catalysis - radical cyclization - radical acylation - nitrogen radicalsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2145-8697.
- Supporting Information
Publication History
Received: 22 June 2023
Accepted after revision: 01 August 2023
Accepted Manuscript online:
01 August 2023
Article published online:
12 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
- 1b Clavier H, Nolan SP. Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 2007; 103: 193
- 1c Chen X, Wang H, Jin Z, Chi YR. Chin. J. Chem. 2020; 38: 1167
- 1d Liu Y, Wang Y, Wu X, Chi YR. Chem. Rec. 2022; e202200219
- 1e Chen X, He P, Xia S, Cui L, Zhong G, Yang L. Chem. Rec. 2023; e202200279
- 1f Marion N, Díez-González S, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 2988
- 1g Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
- 1h De Sarkar S, Biswas A, Samanta RC, Studer A. Chem. Eur. J. 2013; 19: 4664
- 1i Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
- 1j Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
- 1k Schmidt A, Wiechmann S, Otto CF. In Heterocyclic Chemistry in the 21st Century: A Tribute to Alan Katritzky, Vol. 119. Scriven EF. V, Ramsden CA. Academic Press; Cambridge: 2016: 143
- 2 Ukai T, Tanaka R, Dokawa T. J. Pharm. Soc. Jpn. 1943; 63: 296
- 3 Stetter H. Angew. Chem. Int. Ed. 1976; 15: 639
- 4a Ishii T, Nagao K, Ohmiya H. Chem. Sci. 2020; 11: 5630
- 4b Marzo L. Eur. J. Org. Chem. 2021; 4603
- 4c Li Q.-Z, Zeng R, Han B, Li J.-L. Chem. Eur. J. 2021; 27: 3238
- 4d Chen K.-Q, Sheng H, Liu Q, Shao P.-L, Chen X.-Y. Sci. China Chem. 2021; 64: 7
- 4e Chen J.-J, Zhang Y, Huang H.-M. Catal. Sci. Technol. 2022; 12: 5241
- 4f Liu K, Schwenzer M, Studer A. ACS Catal. 2022; 12: 11984
- 4g Wan D.-H, Yang H.-B. Synthesis 2022; 54: 3307
- 4h Tian T, Chen Q, Li Z, Nishihara Y. Synthesis 2022; 54: 3667
- 4i Li Q.-Z, Kou X.-X, Qi T, Li J.-L. ChemCatChem 2023; 15: e202201320
- 5a Nakanishi I, Itoh S, Suenobu T, Inoue H, Fukuzumi S. Chem. Lett. 1997; 26: 707
- 5b Nakanishi I, Itoh S, Suenobu T, Fukuzumi S. Angew. Chem. Int. Ed. 1998; 37: 992
- 5c Nakanishi I, Itoh S. Chem. Commun. 1997; 1927
- 5d Nakanishi I, Itoh S, Fukuzumi S. Chem. Eur. J. 1999; 5: 2810
- 6 Guin J, De Sarkar S, Grimme S, Studer A. Angew. Chem. Int. Ed. 2008; 47: 8727
- 7a De Sarkar S, Grimme S, Studer A. J. Am. Chem. Soc. 2010; 132: 1190
- 7b De Sarkar S, Studer A. Org. Lett. 2010; 12: 1992
- 7c Wu X, Zhang Y, Wang Y, Ke J, Jeret M, Reddi RN, Yang S, Song B.-A, Chi YR. Angew. Chem. Int. Ed. 2017; 56: 2942
- 7d Chen X.-Y, Chen K.-Q, Sun D.-Q, Ye S. Chem. Sci. 2017; 8: 1936
- 7e Wang H, Wang Y, Chen X, Mou C, Yu S, Chai H, Jin Z, Chi YR. Org. Lett. 2019; 21: 7440
- 7f Dai L, Xia Z.-H, Gao Y.-Y, Gao Z.-H, Ye S. Angew. Chem. Int. Ed. 2019; 58: 18124
- 7g Man Y, Zeng X, Xu B. Chem. Eur. J. 2023; 29: e202203716
- 7h De Sarkar S, Studer A. Angew. Chem. Int. Ed. 2010; 49: 9266
- 7i Du Y, Wang Y, Li X, Shao Y, Li G, Webster RD, Chi YR. Org. Lett. 2014; 16: 5678
- 7j White NA, Rovis T. J. Am. Chem. Soc. 2014; 136: 14674
- 7k Zhang Y, Du Y, Huang Z, Xu J, Wu X, Wang Y, Wang M, Yang S, Webster RD, Chi YR. J. Am. Chem. Soc. 2015; 137: 2416
- 7l White NA, Rovis T. J. Am. Chem. Soc. 2015; 137: 10112
- 7m Yang W, Hu W, Dong X, Li X, Sun J. Angew. Chem. Int. Ed. 2016; 55: 15783
- 7n Li B.-S, Wang Y, Proctor RS. J, Zhang Y, Webster RD, Yang S, Song B, Chi YR. Nat. Commun. 2016; 7: 12933
- 7o Zhao K, Enders D. Angew. Chem. Int. Ed. 2017; 56: 3754
- 8a Song R, Chi YR. Angew. Chem. Int. Ed. 2019; 58: 8628
- 8b Ishii T, Kakeno Y, Nagao K, Ohmiya H. J. Am. Chem. Soc. 2019; 141: 3854
- 8c Kusakabe M, Nagao K, Ohmiya H. Org. Lett. 2021; 23: 7242
- 8d Gao Y, Quan Y, Li Z, Gao L, Zhang Z, Zou X, Yan R, Qu Y, Guo K. Org. Lett. 2021; 23: 183
- 8e Matsuki Y, Ohnishi N, Kakeno Y, Takemoto S, Ishii T, Nagao K, Ohmiya H. Nat. Commun. 2021; 12: 3848
- 8f Li Q.-Z, Liu Y.-Q, Kou X.-X, Zou W.-L, Qi T, Xiang P, Xing J.-D, Zhang X, Li J.-L. Angew. Chem. Int. Ed. 2022; 61: e202207824
- 8g Han Y.-F, Huang Y, Liu H, Gao Z.-H, Zhang C.-L, Ye S. Nat. Commun. 2022; 13: 5754
- 8h Choi H, Mathi GR, Hong S, Hong S. Nat. Commun. 2022; 13: 1776
- 8i Zhang B, Qi J.-Q, Liu Y, Li Z, Wang J. Org. Lett. 2022; 24: 279
- 8j She K, Liang F, Tian S, Wang H, Tsui GC, Wang Q. Org. Lett. 2022; 24: 4840
- 8k Man Y, Liu S, Xu B, Zeng X. Org. Lett. 2022; 24: 944
- 8l Liu Y.-Q, Li Q.-Z, Kou X.-X, Zeng R, Qi T, Zhang X, Peng C, Han B, Li J.-L. J. Org. Chem. 2022; 87: 5229
- 8m Ishii T, Ota K, Nagao K, Ohmiya H. J. Am. Chem. Soc. 2019; 141: 14073
- 8n Zhang B, Wang J. Org. Lett. 2022; 24: 3721
- 8o Li Q.-Z, Zeng R, Fan Y, Liu Y.-Q, Qi T, Zhang X, Li J.-L. Angew. Chem. Int. Ed. 2022; 61: e202116629
- 8p Du H.-W, Liu M.-S, Shu W. Org. Lett. 2022; 24: 5519
- 8q Zeng R, Xie C, Xing J.-D, Dai H.-Y, He M.-H, Xu P.-S, Yang Q.-C, Han B, Li J.-L. Tetrahedron 2023; 132: 133239
- 8r Li J, Liang Z, Ren Y, Gao J, Du D. Org. Chem. Front. 2023; 10: 1669
- 8s Kim I, Im H, Lee H, Hong S. Chem. Sci. 2020; 11: 3192
- 8t Li J.-L, Liu Y.-Q, Zou W.-L, Zeng R, Zhang X, Liu Y, Han B, He Y, Leng H.-J, Li Q.-Z. Angew. Chem. Int. Ed. 2020; 59: 1863
- 8u Zhang B, Peng Q, Guo D, Wang J. Org. Lett. 2020; 22: 443
- 8v Yang H.-B, Wang Z.-H, Li J.-M, Wu C. Chem. Commun. 2020; 56: 3801
- 8w Ota K, Nagao K, Ohmiya H. Org. Lett. 2020; 22: 3922
- 8x Ishii T, Nagao K, Ohmiya H. Tetrahedron 2021; 91: 132212
- 8y Yang H.-B, Wan D.-H. Org. Lett. 2021; 23: 1049
- 8z Liu C, Liang Z, Jialingbieke A, Gao J, Du D. Org. Lett. 2023; 25: 2657
- 8aa Su F, Zou J, Lv X, Lu F, Long Y, Tang K, Li B, Chai H, Wu X, Chi YR. Angew. Chem. Int. Ed. 2023; 62: e202303388
- 8ab Wang J.-M, Chen T, Yao C.-S, Zhang K. Org. Lett. 2023; 25: 3325
- 9 Bay AV, Fitzpatrick KP, Betori RC, Scheidt KA. Angew. Chem. Int. Ed. 2020; 59: 9143
- 10 Meng Q.-Y, Döben N, Studer A. Angew. Chem. Int. Ed. 2020; 59: 19956
- 11a Bay AV, Fitzpatrick KP, González-Montiel GA, Farah AO, Cheong PH.-Y, Scheidt KA. Angew. Chem. Int. Ed. 2021; 60: 17925
- 11b Bay AV, Farnam EJ, Scheidt KA. J. Am. Chem. Soc. 2022; 144: 7030
- 11c Ren S.-C, Yang X, Mondal B, Mou C, Tian W, Jin Z, Chi YR. Nat. Commun. 2022; 13: 2846
- 11d Meng Q.-Y, Lezius L, Studer A. Nat. Commun. 2021; 12: 2068
- 11e Sato Y, Goto Y, Nakamura K, Miyamoto Y, Sumida Y, Ohmiya H. ACS Catal. 2021; 11: 12886
- 11f Zhu JL, Scheidt KA. Tetrahedron 2021; 92: 132288
- 11g Yu X, Meng Q.-Y, Daniliuc CG, Studer A. J. Am. Chem. Soc. 2022; 144: 7072
- 11h Wang X, Zhu B, Liu Y, Wang Q. ACS Catal. 2022; 12: 2522
- 11i Yang H.-B, Jin X.-F, Jiang H.-Y, Luo W. Org. Lett. 2023; 25: 1829
- 11j Reimler J, Yu X.-Y, Spreckelmeyer N, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2023; 62: e202303222
- 11k Goto Y, Sano M, Sumida Y, Ohmiya H. ChemRxiv 2023; preprint
- 11l Wang P, Fitzpatrick KP, Scheidt KA. Adv. Synth. Catal. 2022; 364: 518
- 11m Döben N, Reimler J, Studer A. Adv. Synth. Catal. 2022; 364: 3348
- 11n Prentice C, Morrison J, Zysman-Colman E, Smith AD. Chem. Commun. 2022; 58: 13624
- 11o Liu Y, Wu Z, Li W, Zhang M, Zhang Y, Deng S, Fan S, Zhu YW, Feng Y.-S. Org. Chem. Front. 2023; 10: 3288
- 11p Zuo Z, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2021; 60: 25252
- 11q Gao Y, Zheng Z, Zhu Y, Xu W, Zhou Y, Yu C, Jiang X. Green Chem. 2023; 25: 3909
- 11r Tan C.-Y, Kim M, Hong S. Angew. Chem. Int. Ed. 2023; 62: e202306191
- 12a Tao X, Wang Q, Kong L, Ni S, Pan Y, Wang Y. ACS Catal. 2022; 12: 15241
- 12b Liu K, Studer A. J. Am. Chem. Soc. 2021; 143: 4903
- 12c Li S, Wang S, Feng H, Tang F, Yang W, Li X.-X, Zhang Q, Fan S, Feng Y.-S. Org. Lett. 2023; 25: 3369
- 12d Wang X, Yang R, Zhu B, Liu Y, Song H, Dong J, Wang Q. Nat. Commun. 2023; 14: 2951
- 13a Zhu JL, Schull CR, Tam AT, Rentería-Gómez Á, Gogoi AR, Gutierrez O, Scheidt KA. J. Am. Chem. Soc. 2023; 145: 1535
- 13b Wang L, Sun J, Xia J, Li M, Zhang L, Ma R, Zheng G, Zhang Q. Sci. China Chem. 2022; 65: 1938
- 13c Wang L, Sun J, Xia J, Ma R, Zheng G, Zhang Q. Org. Chem. Front. 2023; 10: 1047
- 13d Huang H, Dai Q.-S, Leng H.-J, Li Q.-Z, Yang S.-L, Tao Y.-M, Zhang X, Qi T, Li J.-L. Chem. Sci. 2022; 13: 2584
- 13e Ren S.-C, Lv W.-X, Yang X, Yan J.-L, Xu J, Wang F.-X, Hao L, Chai H, Jin Z, Chi YR. ACS Catal. 2021; 11: 2925
- 13f Mavroskoufis A, Rajes K, Golz P, Agrawal A, Ruß V, Götze JP, Hopkinson MN. Angew. Chem. Int. Ed. 2020; 59: 3190
- 14 Sheng H, Liu Q, Zhang B.-B, Wang Z.-X, Chen X.-Y. Angew. Chem. Int. Ed. 2023; 62: e202218468
- 15 Ning Y, Wang S, Li M, Han J, Zhu C, Xie J. Nat. Commun. 2021; 12: 4637
- 16a Pratley C, Fenner S, Murphy JA. Chem. Rev. 2022; 122: 8181
- 16b Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
- 16c Xiong T, Zhang Q. Chem. Soc. Rev. 2016; 45: 3069
- 16d Kwon K, Simons RT, Nandakumar M, Roizen JL. Chem. Rev. 2022; 122: 2353
- 16e Luo J, Wei W.-T. Adv. Synth. Catal. 2018; 360: 2076
- 16f Kärkäs MD. ACS Catal. 2017; 7: 4999
- 16g Jiang H, Studer A. CCS Chem. 2019; 1: 38
- 17a Choi GJ, Knowles RR. J. Am. Chem. Soc. 2015; 137: 9226
- 17b Miller DC, Choi GJ, Orbe HS, Knowles RR. J. Am. Chem. Soc. 2015; 137: 13492
- 18 Liu WD, Lee W, Shu H, Xiao C, Xu H, Chen X, Houk KN, Zhao J. J. Am. Chem. Soc. 2022; 144: 22767
- 19 Dong Y.-X, Zhang C.-L, Gao Z.-H, Ye S. Org. Lett. 2023; 25: 855
- 20 Aminoacylation of Alkenes; General Procedure 4CzIPN (1.6 mg, 2.0 μmol, 2.0 mol%), the NHC precursor A (6.3 mg, 20 μmol, 20 mol%), Cs2CO3 (65.2 mg, 0.200 mmol, 2.0 equiv.), an alkene (if solid, 0.10 mmol, 1.0 equiv.) and an acyl fluoride (if solid, 0.40 mmol, 4.0 equiv.) were added to a Schlenk tube. Afterwards, the tube was evacuated and refilled with Ar three times. An alkene (if liquid, 0.10 mmol, 1.0 equiv.), an acyl fluoride (if liquid, 0.40 mmol, 4.0 equiv.) and DCM (1.0 mL) were added and the reaction mixture was degassed via two freeze-pump-thaw cycles. The mixture was irradiated with a 456 nm LED for 48 h. After that time, the crude product was purified by column chromatography (SiO2, Et2O/pentane).
- 21 CCDC 2271272 (3ja) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service via www.ccdc.cam.ac.uk/structure
- 22a Delfau L, Nichilo S, Molton F, Broggi J, Tomás-Mendivil E, Martin D. Angew. Chem. Int. Ed. 2021; 60: 26783
- 22b Shang T.-Y, Lu L.-H, Cao Z, Liu Y, He W.-M, Yu B. Chem. Commun. 2019; 55: 5408
- 22c Yi X, Hu X. Angew. Chem. Int. Ed. 2019; 58: 4700
- 23 Curran DP, Thoma G. J. Am. Chem. Soc. 1992; 114: 4436
For selected reviews on NHCs and NHC catalysis, see:
For selected reviews on radical NHC catalysis, see:
For selected reviews on nitrogen-centered radicals, see:
For redox potentials, see: