Subscribe to RSS
DOI: 10.1055/a-2146-5972
Navigation und Robotik in der Totalendoprothetik des Kniegelenks – Evidenz?
Die Integration von Navigationssystemen und Robotik in die Totalendoprothetik des Kniegelenks markiert einen Meilenstein in der orthopädischen Chirurgie. Durch präzise Planung und millimetergenaue Umsetzung eröffnet diese Fusion aus High-Tech und Heilkunst neue Dimensionen für eine individuell angepasste und effektive Kniegelenkrekonstruktion. Diese Artikel stellt die Entwicklung, den aktuellen Stand und die Evidenz von Navigation und Robotik in der Knietotalendoprothetik dar.
-
Die computergestützte Navigation in der Knieendoprothetik erfolgt überwiegend bildfrei, d. h. es werden intraoperativ die notwendigen Landmarken in Relation zu am Knochen verankerten Trackern erfasst.
-
Unterschiedliche Technologien werden als „robotergestützt“ bezeichnet. Alle robotischen Systeme beruhen auf einer Navigation. Es existieren sowohl bildfreie als auch bildgestützte Systeme. Die robotischen Tätigkeiten reichen von einer reinen Positionierung konventioneller Schnittblöcke bis hin zu haptisch kontrollierten Sägen an einem Roboterarm.
-
Mittels computerassistierter Navigation sowie mit roboterassistierten Systemen konnte die Präzision der Implantation von Knietotalendoprothesen verbessert werden. Dadurch konnte bisher ein geringer Effekt hinsichtlich der Reduktion von Revisionsraten erreicht werden.
-
Das von den Patienten berichtete Outcome konnte durch die Nutzung von Navigation und Robotik bisher nicht relevant verbessert werden.
-
In Bezug auf eine Verbesserung des patientenberichteten Outcomes scheinen die technologischen Unterstützungen vor allem dann hilfreich zu sein, wenn sie für individualisierte Alignment-Strategien genutzt werden. Es zeigt sich eine zunehmende Evidenz, dass dies wichtiger ist als die reine Unterstützung der Knochenschnitte für ein mechanisches Alignment.
Schlüsselwörter
Knie-TEP - roboterassoziierte Chirurgie - computergestützte Navigation - robotisches Operationssystem - AlignmentPublication History
Article published online:
27 March 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Institut für Qualitätssicherung und Transparenz im Gesundheitswesen (IQTIG). Qualitätsreport 2020. 2020 Accessed December 22, 2023 at: https://www.dgthg.de/sites/default/files/IQTIG_Qualitaetsreport-2020_2021–02–11.pdf
- 2 Evans JT, Walker RW, Evans JP. et al. How long does a knee replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet 2019; 393: 655-663 DOI: 10.1016/S0140-6736(18)32531-5.
- 3 Endoprothesenregister Deutschland (EPRD). Jahresbericht 2022. 2022 Accessed December 22, 2023 at: https://www.eprd.de/fileadmin/user_upload/Dateien/Publikationen/Berichte/Jahresbericht2022-Status5_2022–10–25_F.pdf
- 4 DeFrance MJ, Scuderi GR. Are 20% of patients actually dissatisfied following total knee arthroplasty? A systematic review of the literature. J Arthroplasty 2023; 38: 594-599 DOI: 10.1016/j.arth.2022.10.011. (PMID: 36252743)
- 5 Deutsche Gesellschaft für Orthopädie und Unfallchirurgie e. V. (DGOU). S2k-Leitlinie Indikation Knieendoprothese. AWMF Reg.-Nr.: 187–004. 2023 Accessed December 22, 2023 at: https://register.awmf.org/de/leitlinien/detail/187–004
- 6 Sharkey PF, Hozack WJ, Rothman RH. et al. Insall award paper. Why are total knee arthroplasties failing today?. Clin Orthop Relat Res 2002; (404) 7-13 DOI: 10.1097/00003086-200211000-00003.
- 7 Sharkey PF, Lichstein PM, Shen C. et al. Why are total knee arthroplasties failing today--has anything changed after 10 years?. J Arthroplasty 2014; 29: 1774-1778 DOI: 10.1016/j.arth.2013.07.024. (PMID: 25007726)
- 8 Bellemans J, Colyn W, Vandenneucker H. et al. The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res 2012; 470: 45-53 DOI: 10.1007/s11999-011-1936-5. (PMID: 21656315)
- 9 MacDessi SJ, Griffiths-Jones W, Harris IA. et al. Coronal Plane Alignment of the Knee (CPAK) classification. Bone Joint J 2021; 103-B: 329-337 DOI: 10.1302/0301-620X.103B2.BJJ-2020-1050.R1. (PMID: 33517740)
- 10 Cheng T, Zhang G, Zhang X. Imageless navigation system does not improve component rotational alignment in total knee arthroplasty. J Surg Res 2011; 171: 590-600 DOI: 10.1016/j.jss.2010.05.006. (PMID: 21176919)
- 11 Hetaimish BM, Khan MM, Simunovic N. et al. Meta-analysis of navigation vs conventional total knee arthroplasty. J Arthroplasty 2012; 27: 1177-1182 DOI: 10.1016/j.arth.2011.12.028. (PMID: 22333865)
- 12 Bathis H, Perlick L, Luring C. et al. CT-basierte und CT-freie Navigation in der Knieendoprothetik. Ergebnisse einer prospektiven Studie. Unfallchirurg 2003; 106: 935-940 DOI: 10.1007/s00113-003-0685-7.
- 13 Pitto RP, Graydon AJ, Bradley L. et al. Accuracy of a computer-assisted navigation system for total knee replacement. J Bone Joint Surg Br 2006; 88: 601-605 DOI: 10.1302/0301-620X.88B5.17431. (PMID: 16645104)
- 14 Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, knee & shoulder arthroplasty 2022 annual report. 2022 Accessed December 22, 2023 at: https://aoanjrr.sahmri.com/documents/10180/732916/AOA+2022+AR+Digital/f63ed890–36d0-c4b3–2e0b-7b63e2071b16
- 15 Heinz T, Eidmann A, Anderson P. et al. Trends in computer-assisted surgery for total knee arthroplasty in Germany: an analysis based on the operative procedure classification system between 2010 to 2021. J Clin Med 2023; 12: 549 DOI: 10.3390/jcm12020549. (PMID: 36675478)
- 16 Luan Y, Wang H, Zhang M. et al. Comparison of navigation systems for total knee arthroplasty: a systematic review and meta-analysis. Front Surg 2023; 10: 1112147 DOI: 10.3389/fsurg.2023.1112147. (PMID: 36733891)
- 17 Bennett KM, Griffith A, Sasanelli F. et al. Augmented reality navigation can achieve accurate coronal component alignment during total knee arthroplasty. Cureus 2023; 15: e34607 DOI: 10.7759/cureus.34607.
- 18 Meijer MF, Reininga IH, Boerboom AL. et al. Does imageless computer-assisted TKA lead to improved rotational alignment or fewer outliers? A systematic review. Clin Orthop Relat Res 2014; 472: 3124-3133 DOI: 10.1007/s11999-014-3688-5. (PMID: 24867451)
- 19 de Steiger RN, Liu YL, Graves SE. Computer navigation for total knee arthroplasty reduces revision rate for patients less than sixty-five years of age. J Bone Joint Surg Am 2015; 97: 635-642 DOI: 10.2106/JBJS.M.01496.
- 20 Panjwani TR, Mullaji A, Doshi K. et al. Comparison of functional outcomes of computer-assisted vs conventional total knee arthroplasty: a systematic review and meta-analysis of high-quality, prospective studies. J Arthroplasty 2019; 34: 586-593 DOI: 10.1016/j.arth.2018.11.028. (PMID: 30611520)
- 21 Lee DY, Park YJ, Hwang SC. et al. No differences in mid- to long-term outcomes of computer-assisted navigation versus conventional total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2020; 28: 3183-3192 DOI: 10.1007/s00167-019-05808-5. (PMID: 31784782)
- 22 Baier C, Wolfsteiner J, Otto F. et al. Clinical, radiological and survivorship results after ten years comparing navigated and conventional total knee arthroplasty: a matched-pair analysis. Int Orthop 2017; 41: 2037-2044 DOI: 10.1007/s00264-017-3509-z. (PMID: 28550426)
- 23 Beyer F, Pape A, Lützner C. et al. Similar outcomes in computer-assisted and conventional total knee arthroplasty: ten-year results of a prospective randomized study. BMC Musculoskelet Disord 2021; 22: 707 DOI: 10.1186/s12891-021-04556-3. (PMID: 34407776)
- 24 Cip J, Obwegeser F, Benesch T. et al. Twelve-year follow-up of navigated computer-assisted versus conventional total knee arthroplasty: a prospective randomized comparative trial. J Arthroplasty 2018; 33: 1404-1411 DOI: 10.1016/j.arth.2017.12.012. (PMID: 29426792)
- 25 d’Amato M, Ensini A, Leardini A. et al. Conventional versus computer-assisted surgery in total knee arthroplasty: comparison at ten years follow-up. Int Orthop 2019; 43: 1355-1363 DOI: 10.1007/s00264-018-4114-5. (PMID: 30196443)
- 26 Kim YH, Park JW, Kim JS. The clinical outcome of computer-navigated compared with conventional knee arthroplasty in the same patients: a prospective, randomized, double-blind, long-term study. J Bone Joint Surg Am 2017; 99: 989-996 DOI: 10.2106/JBJS.16.00791. (PMID: 28632587)
- 27 Kim Y-H, Park J-W, Kim J-S. 2017 Chitranjan S. Ranawat Award: does computer navigation in knee arthroplasty improve functional outcomes in young patients? A randomized study. Clin Orthop Relat Res 2018; 476: 6-15 DOI: 10.1007/s11999.0000000000000000.
- 28 Lacko M, Schreierova D, Cellar R. et al. [Long-Term Results of Computer-Navigated Total Knee Arthroplasties Performed by Low-Volume and Less Experienced Surgeon]. Acta Chir Orthop Traumatol Cech 2018; 85: 219-225 (PMID: 30257783)
- 29 Ollivier M, Parratte S, Lino L. et al. No benefit of computer-assisted TKA: 10-year results of a prospective randomized study. Clin Orthop Relat Res 2018; 476: 126-134 DOI: 10.1007/s11999.0000000000000021. (PMID: 29529627)
- 30 Song EK, Agrawal PR, Kim SK. et al. A randomized controlled clinical and radiological trial about outcomes of navigation-assisted TKA compared to conventional TKA: long-term follow-up. Knee Surg Sports Traumatol Arthrosc 2016; 24: 3381-3386 DOI: 10.1007/s00167-016-3996-2. (PMID: 26831857)
- 31 Siddiqi A, Mont MA, Krebs VE. et al. Not all robotic-assisted total knee arthroplasty are the same. J Am Acad Orthop Surg 2021; 29: 45-59 DOI: 10.5435/JAAOS-D-20-00654. (PMID: 33394612)
- 32 Hampp EL, Scholl L, Faizan A. et al. Comparison of Iatrogenic soft tissue trauma in robotic-assisted versus manual partial knee arthroplasty. Surg Technol Int 2021; 39: 419-426 DOI: 10.52198/21.STI.39.OS1465. (PMID: 34352111)
- 33 Rossi SMP, Sangaletti R, Perticarini L. et al. High accuracy of a new robotically assisted technique for total knee arthroplasty: an in vivo study. Knee Surg Sports Traumatol Arthrosc 2023; 31: 1153-1161 DOI: 10.1007/s00167-021-06800-8. (PMID: 34981162)
- 34 Li C, Zhang Z, Wang G. et al. Accuracies of bone resection, implant position, and limb alignment in robotic-arm-assisted total knee arthroplasty: a prospective single-centre study. J Orthop Surg Res 2022; 17: 61 DOI: 10.1186/s13018-022-02957-1. (PMID: 35093133)
- 35 Savov P, Tuecking LR, Windhagen H. et al. Imageless robotic handpiece-assisted total knee arthroplasty: a learning curve analysis of surgical time and alignment accuracy. Arch Orthop Trauma Surg 2021; 141: 2119-2128 DOI: 10.1007/s00402-021-04036-2. (PMID: 34259927)
- 36 Shatrov J, Murphy GT, Duong J. et al. Robotic-assisted total knee arthroplasty with the OMNIBot platform: a review of the principles of use and outcomes. Arch Orthop Trauma Surg 2021; 141: 2087-2096 DOI: 10.1007/s00402-021-04173-8. (PMID: 34652515)
- 37 Mancino F, Rossi SMP, Sangaletti R. et al. A new robotically assisted technique can improve outcomes of total knee arthroplasty comparing to an imageless navigation system. Arch Orthop Trauma Surg 2023; 143: 2701-2711 DOI: 10.1007/s00402-022-04560-9. (PMID: 35913518)
- 38 Zhang J, Ndou WS, Ng N. et al. Robotic-arm assisted total knee arthroplasty is associated with improved accuracy and patient reported outcomes: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 2022; 30: 2677-2695 DOI: 10.1007/s00167-021-06464-4. (PMID: 33547914)
- 39 Bendich I, Kapadia M, Alpaugh K. et al. Trends of utilization and 90-day complication rates for computer-assisted navigation and robotic assistance for total knee arthroplasty in the United States from 2010 to 2018. Arthroplast Today 2021; 11: 134-139 DOI: 10.1016/j.artd.2021.08.005.
- 40 Wang JC, Piple AS, Hill WJ. et al. Computer-navigated and robotic-assisted total knee arthroplasty: increasing in popularity without increasing complications. J Arthroplasty 2022; 37: 2358-2364 DOI: 10.1016/j.arth.2022.06.014.
- 41 Ruangsomboon P, Ruangsomboon O, Pornrattanamaneewong C. et al. Clinical and radiological outcomes of robotic-assisted versus conventional total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. Acta Orthop 2023; 94: 60-79 DOI: 10.2340/17453674.2023.9411. (PMID: 36805771)
- 42 Vermue H, Batailler C, Monk P. et al. The evolution of robotic systems for total knee arthroplasty, each system must be assessed for its own value: a systematic review of clinical evidence and meta-analysis. Arch Orthop Trauma Surg 2023; 143: 3369-3381 DOI: 10.1007/s00402-022-04632-w.
- 43 Winnock de Grave P, Kellens J, Tampere T. et al. Clinical outcomes in TKA are enhanced by both robotic assistance and patient specific alignment: a comparative trial in 120 patients. Arch Orthop Trauma Surg 2023; 143: 3391-3399 DOI: 10.1007/s00402-022-04636-6.
- 44 Elbuluk AM, Jerabek SA, Suhardi VJ. et al. Head-to-head comparison of kinematic alignment versus mechanical alignment for total knee arthroplasty. J Arthroplasty 2022; 37: S849-S851 DOI: 10.1016/j.arth.2022.01.052. (PMID: 35093548)
- 45 Huber K, Christen B, Calliess S. et al. True kinematic alignment is applicable in 44% of patients applying restrictive indication criteria – a retrospective analysis of 111 TKA using robotic assistance. J Pers Med 2021; 11: 662 DOI: 10.3390/jpm11070662. (PMID: 34357129)
- 46 Parratte S, Van Overschelde P, Bandi M. et al. An anatomo-functional implant positioning technique with robotic assistance for primary TKA allows the restoration of the native knee alignment and a natural functional ligament pattern, with a faster recovery at 6 months compared to an adjusted mechanical technique. Knee Surg Sports Traumatol Arthrosc 2023; 31: 1334-1346 DOI: 10.1007/s00167-022-06995-4. (PMID: 35552475)
- 47 Jenny JY, Miehlke RK, Giurea A. Learning curve in navigated total knee replacement. A multi-centre study comparing experienced and beginner centres. Knee 2008; 15: 80-84 DOI: 10.1016/j.knee.2007.12.004. (PMID: 18262789)
- 48 Tay ML, Carter M, Zeng N. et al. Robotic-arm assisted total knee arthroplasty has a learning curve of 16 cases and increased operative time of 12 min. ANZ J Surg 2022; 92: 2974-2979 DOI: 10.1111/ans.17975.
- 49 Kayani B, Konan S, Ayuob A. et al. Robotic technology in total knee arthroplasty: a systematic review. EFORT Open Rev 2019; 4: 611-617 DOI: 10.1302/2058-5241.4.190022. (PMID: 31754467)
- 50 Zabat MA, Oakley CT, Marwin SE. et al. The learning curve associated with imageless navigation in total knee arthroplasty. Arch Orthop Trauma Surg 2023; 143: 1013-1019 DOI: 10.1007/s00402-022-04373-w.
- 51 Jenny JY, Picard F. Learning navigation – learning with navigation. A review. SICOT J 2017; 3: 39 DOI: 10.1051/sicotj/2017025. (PMID: 28573966)
- 52 Christen B, Tanner L, Ettinger M. et al. Comparative cost analysis of four different computer-assisted technologies to implant a total knee arthroplasty over conventional instrumentation. J Pers Med 2022; 12: 184 DOI: 10.3390/jpm12020184. (PMID: 35207672)
- 53 Trieu J, Schilling C, Dowsey MM. et al. The cost-effectiveness of computer navigation in primary total knee replacement: a scoping review. EFORT Open Rev 2021; 6: 173-180 DOI: 10.1302/2058-5241.6.200073. (PMID: 33841916)
- 54 Hua Y, Salcedo J. Cost-effectiveness analysis of robotic-arm assisted total knee arthroplasty. PLoS One 2022; 17: e0277980 DOI: 10.1371/journal.pone.0277980. (PMID: 36441807)
- 55 Zhang JJY, Chen JY, Tay DKJ. et al. Cost-effectiveness of robot-assisted total knee arthroplasty: a Markov decision analysis. J Arthroplasty 2023; 38: 1434-1437 DOI: 10.1016/j.arth.2023.02.022. (PMID: 36805115)