Synthesis 2023; 55(23): 4000-4010
DOI: 10.1055/a-2147-2788
paper

Application of the Heck Reaction for the Synthesis of C-Glycosyl Phenolic Compounds

Sara M. Tomé
a   LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
,
b   Department of Organic and Inorganic Chemistry, University of Oviedo, 33006 Oviedo, Spain
,
a   LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
› Author Affiliations
This work has received financial support from the University of Aveiro, Fundação para a Ciência e a Tecnologia (FCT/MEC; UIDB/50006/2020), and Portugal 2020 (EPIGENGLICON, POCI-01-0145-FEDER-029767), Principado de Asturias (FICYT IDI/2018/000181), Ministerio de Asuntos Económicos y Transformación Digital (MINECO; PID2019-109253RB-I00) and the Fourth Framework Programme (MCIU/AEI/FEDER, UE; RTI2018-099756-B-I00). S.M.T. thanks Fundação para a Ciência e a Tecnologia for her PhD grant (SFRH/BD/103252/2014).


Abstract

The potential of the Heck reaction for the C-glycosylation of phenolic compounds was explored. An efficient and general methodology for the synthesis of C-glycosylated phenolic compounds based on the Heck coupling of halogenated phenolic derivatives (chromones, 2-styrylchromones, and xanthones) and sugar alkenes was developed. The protocol was applied to the preparation of previously unreported C-glycosylated 2-styrylchromones and xanthones of potential biological relevance.

Supporting Information



Publication History

Received: 12 June 2023

Accepted after revision: 02 August 2023

Accepted Manuscript online:
02 August 2023

Article published online:
19 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Quideau S, Deffieux D, Douat-Casassus C, Pouységu L. Angew. Chem. Int. Ed. 2011; 50: 586
    • 1b Whiting DA. Nat. Prod. Rep. 2001; 18: 583
  • 2 Bruneton J. Pharmacognosy – Phytochemistry Medicinal Plants, 2nd ed. Lavoisier Publishing; Paris: 1999
  • 3 Ji Y, Li B, Qiao M, Li J, Xu H, Zhang L, Zhang X. Appl. Microbiol. Biotechnol. 2020; 104: 6587
  • 4 Yang B, Liu H, Yang J, Gupta VK, Jiang Y. Trends Food Sci. Technol. 2018; 79: 116
  • 5 Plaza M, Pozzo T, Liu J, Gulshan Ara KZ, Turner C, Nordberg Karlsson E. J. Agric. Food Chem. 2014; 62: 3321
  • 6 Xiao J. Crit. Rev. Food Sci. Nutr. 2017; 57: 1874
  • 7 Godinho PI. C, Soengas RG, Silva VL. M. Pharmaceuticals 2021; 14: 546
    • 8a Rauter AP, Lopes RG, Martins A. Nat. Prod. Commun. 2007; 11: 1175
    • 8b Courts FL, Williamson G. Crit. Rev. Food Sci. Nutr. 2015; 55: 1352
    • 9a Talhi O, Silva AM. S. Curr. Org. Chem. 2012; 16: 859
    • 9b Zeng P, Zhang Y, Pan C, Jia Q, Guo F, Li Y, Zhu W, Chen K. Acta Pharm. Sin. B 2013; 3: 154
    • 10a Nicotra F. Top. Curr. Chem. 1997; 187: 55
    • 10b Yang Y, Yu B. Chem. Rev. 2017; 117: 12281
    • 10c Gou X, Zhu X, Zhang B, Liang Y. Chem. Eur. J. 2023; 29: e202203351
    • 11a Mukherjee D, Sarkar SK, Chowdhury US, Taneja SC. Tetrahedron Lett. 2007; 48: 663
    • 11b Lemaire S, Houpis IN, Xiao T, Li J, Digard E, Gozlan C, Liu R, Gavryushin A, Diene C, Wang Y, Farina V, Knochel P. Org. Lett. 2012; 14: 1480
    • 12a Beau J.-M, Gallagher T. Top. Curr. Chem. 1997; 187: 1
    • 12b Jarosz S, Zamojski A. Curr. Org. Chem. 2003; 7: 13
    • 12c Miquel N, Doisneau G, Beau J.-M. Chem. Commun. 2000; 46: 2347
    • 14a McKay MJ, Nguyen HM. ACS Catal. 2012; 2: 1563
    • 14b Merino P, Tejero T, Marca E, Gomollon-Bel F, Delso I, Matute R. Heterocycles 2012; 86: 791
  • 15 Wellington KW, Benner SA. Nucleosides Nucleotides Nucleic Acids 2006; 25: 1309
    • 16a Kondor Z, Fuentes DP, Vogel C, Patonay T, Kónya K. Synlett 2016; 27: 888
    • 16b Kondor Z, Herczeg M, Borbás A, Patonay T, Kónya K. Synlett 2016; 27: 2709
    • 17a Santos CM. M, Silva AM. S. Eur. J. Org. Chem. 2017; 3115
    • 17b Gerwick WH, Lopez A, Duyne GD. V, Clardy J, Ortiz W, Baez A. Tetrahedron Lett. 1986; 27: 1979
    • 17c Yang C.-H, Yang Y, Liu J.-H. Phytochem. Lett. 2013; 6: 387
    • 18a Filipe P, Silva AM. S, Morliére P, Brito CM, Patterson LK, Hug GL, Silva JN, Cavaleiro JA. S, Maziére J.-C, Freitas JP, Santus R. Biochem. Pharmacol. 2004; 67: 2207
    • 18b Gomes A, Fernandes E, Silva AM. S, Santos CM. M, Pinto DC. G. A, Cavaleiro JA. S, Lima JL. F. C. Bioorg. Med. Chem. 2007; 15: 6027
    • 18c Winter DK, Sloman DL, Porco JA. Nat. Prod. Rep. 2013; 30: 382
  • 19 Takao K, Ishikawa R, Sugita Y. Chem. Pharm. Bull. 2014; 62: 810
    • 20a Pinto MM. M, Sousa EM, Nascimento SJ. M. Curr. Med. Chem. 2005; 12: 2517
    • 20b El-Seedi HR, El-Barbary MA, El-Ghorab DM. H, Bohlin L, Borg-Karlson A.-K, Göransson U, Verpoorte R. Curr. Med. Chem. 2010; 17: 854
    • 20c Santos CM. M, Freitas M, Fernandes E. Eur. J. Med. Chem. 2018; 157: 1460
    • 20d Shagufta IA. Eur. J. Med. Chem. 2016; 116: 267
  • 21 Santos CM. M, Freitas M, Ribeiro D, Gomes A, Silva AM. S, Cavaleiro JA. S, Fernandes E. Bioorg. Med. Chem. 2010; 18: 6776
  • 22 Fotie J, Bohle SD. Anti-Infect. Agents Med. Chem. 2006; 5: 15
  • 23 Jiang D.-J, Dai Z, Li Y.-J. Cardiovasc. Drug Rev. 2004; 22: 91
  • 24 Feng Z, Lu X, Gan L, Zhang Q, Lin L. Molecules 2020; 25: 598
  • 25 Portela C, Afonso CM. M, Pinto MM. M, Lopes D, Nogueira F, Rosário V. Chem. Biodiversity 2007; 4: 1508
    • 27a Zhang P, Hevey R, Ling C. J. Org. Chem. 2017; 82: 9662
    • 27b Konda S, Kurva B, Nagarapu L, Dattatray AM. Tetrahedron Lett. 2015; 56: 834
  • 28 Dupont J, Souza RF. D, Suarez PA. Z. Chem. Rev. 2002; 102: 3667
  • 29 Santos CM. M, Silva AM. S, Cavaleiro JA. S. Synlett 2007; 3113
  • 31 Wertz S, Leifert D, Studer A. Org. Lett. 2013; 15: 928
  • 32 Al-Mamary MA, Moussa Z. Antioxidant Activity: The Presence and Impact of Hydroxyl Groups in Small Molecules of Natural and Synthetic Origin. In Antioxidants - Benefits, Sources, Mechanisms of Action. Waisundara VY. IntechOpen; London: 2021. DOI: 10.5772/intechopen.95616
    • 33a Bera K, Jalal S, Sarkar S, Jana U. Org. Biomol. Chem. 2014; 12: 57
    • 33b Bálint E, Kállai M, Kovács O, Bölcskei H, Keglevich G. Lett. Drug Des. Discovery 2014; 11: 114
  • 34 Jung N, Bräse S. J. Comb. Chem. 2009; 11: 47
    • 35a Odrowaz-Sypniewski MR, Tsoungas PG, Varvounis G, Cordopatis P. Tetrahedron Lett. 2009; 50: 5981
    • 35b Hu J, Adogla EA, Ju Y, Fan D, Wang Q. Chem. Commun. 2012; 48: 11256
    • 35c Venkanna A, Goud PV. K, Prasad PV, Shanker M, Rao PV. ChemistrySelect 2016; 1: 2271
  • 36 Jang YH, Yang Y, Son SH, Yoo H, Shin J, Won H, Kim SL, Lim C, Kim N. Org. Lett. 2022; 24: 9216
  • 37 Hu B, Cai X, Li C, Huang W, Ichikawa M. Dyes Pigm. 2020; 178: 108333