RSS-Feed abonnieren
DOI: 10.1055/a-2149-4431
Short-Term Western Diet Causes Rapid and Lasting Alterations of Bone Marrow Physiology
Funding This work was supported by the Deutsche Forschungsgemeinschaft grants CRC1123/Z1 (to R.T.A.M.), CRC1123/A10 (to J.D. and C.W.), INST409/97-1FUGG and INST409/150-1FUGG (to C.W. and R.T.A.M.).
Authors' Contribution
M.B. designed and performed experiments, analyzed, and interpreted data; Z.M.-R. performed experiments, analyzed, and interpreted data; C.W. provided funding and intellectual input; R.T.A.M and J.D. provided funding, designed the research, interpreted data, and wrote the manuscript.
* These authors contributed equally to this study.
Publikationsverlauf
Eingereicht: 23. Dezember 2023
Angenommen: 14. Juli 2023
Accepted Manuscript online:
07. August 2023
Artikel online veröffentlicht:
21. September 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Libby P, Buring JE, Badimon L. et al. Atherosclerosis. Nat Rev Dis Primers 2019; 5 (01) 56
- 2 Rohde D, Vandoorne K, Lee IH. et al. Bone marrow endothelial dysfunction promotes myeloid cell expansion in cardiovascular disease. Nat Cardiovasc Res 2022; 1 (01) 28-44
- 3 Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature 2014; 505 (7483) 327-334
- 4 Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol 2019; 20 (05) 303-320
- 5 Baccin C, Al-Sabah J, Velten L. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol 2020; 22 (01) 38-48
- 6 Gomariz A, Helbling PM, Isringhausen S. et al. Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy. Nat Commun 2018; 9 (01) 2532
- 7 Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121 (07) 1109-1121
- 8 Duchene J, Novitzky-Basso I, Thiriot A. et al. Atypical chemokine receptor 1 on nucleated erythroid cells regulates hematopoiesis. Nat Immunol 2017; 18 (07) 753-761
- 9 Pietras EM, Reynaud D, Kang YA. et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell 2015; 17 (01) 35-46
- 10 Pelus LM, Fukuda S. Peripheral blood stem cell mobilization: the CXCR2 ligand GRObeta rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties. Exp Hematol 2006; 34 (08) 1010-1020
- 11 Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 2006; 7 (03) 311-317
- 12 Zink F, Stacey SN, Norddahl GL. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 2017; 130 (06) 742-752
- 13 Jaiswal S, Natarajan P, Silver AJ. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 2017; 377 (02) 111-121
- 14 Heyde A, Rohde D, McAlpine CS. et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 2021; 184 (05) 1348.e22-1361.e22
- 15 Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 2016; 7: 12484
- 16 Itkin T, Gur-Cohen S, Spencer JA. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 2016; 532 (7599) 323-328
- 17 Kusumbe AP, Ramasamy SK, Itkin T. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 2016; 532 (7599) 380-384
- 18 Kunisaki Y, Bruns I, Scheiermann C. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 2013; 502 (7473) 637-643
- 19 Xu C, Gao X, Wei Q. et al. Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nat Commun 2018; 9 (01) 2449
- 20 Acar M, Kocherlakota KS, Murphy MM. et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 2015; 526 (7571) 126-130
- 21 Chen JY, Miyanishi M, Wang SK. et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 2016; 530 (7589) 223-227
- 22 Yousif LF, Di Russo J, Sorokin L. Laminin isoforms in endothelial and perivascular basement membranes. Cell Adhes Migr 2013; 7 (01) 101-110
- 23 Gu YC, Kortesmaa J, Tryggvason K. et al. Laminin isoform-specific promotion of adhesion and migration of human bone marrow progenitor cells. Blood 2003; 101 (03) 877-885
- 24 Susek KH, Korpos E, Huppert J. et al. Bone marrow laminins influence hematopoietic stem and progenitor cell cycling and homing to the bone marrow. Matrix Biol 2018; 67: 47-62
- 25 Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 2014; 15 (12) 771-785
- 26 Christ A, Günther P, Lauterbach MAR. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 2018; 172 (1–2): 162-175.e14