Intensivmedizin up2date 2024; 20(01): 25-43
DOI: 10.1055/a-2149-8576
Allgemeine Intensivmedizin

Beatmungsstrategien in der Intensivmedizin

Carolin Jung
,
Peter Markus Spieth

Beatmung ist eine lebensrettende Maßnahme zur Sicherstellung eines suffizienten pulmonalen Gasaustauschs sowie zur Entlastung des respiratorischen Systems, kann jedoch auch eine Schädigung der Lunge bewirken. Ein fundiertes physiologisches Verständnis sowie Kenntnisse der Beatmungstechnik sind notwendig, um eine differenzierte Lungenunterstützung anwenden zu können. Im Folgenden wird ein Überblick evidenzbasierter Therapieverfahren bei der akuten respiratorischen Insuffizienz gegeben.

Kernaussagen
  • Beatmung ist das wichtigste Organersatzverfahren in der Intensivmedizin.

  • Das Verständnis grundlegender Beatmungskonzepte ist wichtiger als die Anwendung spezifischer Beatmungsmodi.

  • Eine lungenprotektive Beatmung sollte sich an niedrigen Tidalvolumina und niedrigen Atemwegsdrücken orientieren.

  • Die Bauchlagerung ist eine der wenigen Therapien, die mit hohem Evidenzgrad die Letalität bei Patient*innen mit moderatem bis schwerem ARDS (Acute Respiratory Distress Syndrome) reduziert.

  • Die Therapie von Patienten mit therapierefraktären Störungen des Gasaustauschs sollte in spezialisierten ARDS-Zentren erfolgen.



Publication History

Article published online:
22 March 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Bellani G, Laffey JG, Pham T. et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315: 788-800
  • 2 Neto AS, Barbas CSV, Simonis FD. et al. Epidemiological characteristics, practice of ventilation, and clinical outcome in patients at risk of acute respiratory distress syndrome in intensive care units from 16 countries (PRoVENT): an international, multicentre, prospective study. Lancet Respir Med 2016; 4: 882-893
  • 3 Plataki M, Hubmayr RD. The physical basis of ventilator-induced lung injury. Expert Rev Respir Med 2010; 4: 373-385
  • 4 Spieth PM, Bluth T, Gama De Abreu M. et al. Mechanotransduction in the lungs. Minerva Anestesiol 2014; 80: 933-941
  • 5 Uhlig S. Ventilation-induced lung injury and mechanotransduction: stretching it too far?. Am J Physiol Lung Cell Mol Physiol 2002; 282: L892-L896
  • 6 Bhattacharya J, Matthay MA. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu Rev Physiol 2013; 75: 593-615
  • 7 Pelosi P, Rocco PR. Effects of mechanical ventilation on the extracellular matrix. Intensive Care Med 2008; 34: 631-639
  • 8 Westhoff M, Neumann P, Geiseler J. et al. S2k-Leitlinie: nichtinvasive Beatmung als Therapie der akuten respiratorischen Insuffizienz. AWMF-Registernummer: 020–004. 2023 Accessed August 05, 2023 at: https://register.awmf.org/assets/guidelines/020–004l_Nichtinvasive-Beatmung-Therapie-akute-respiratorische-Insuffizienz_2023–03_02.pdf
  • 9 Grasselli G, Calfee CS, Camporota L. et al. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies. Intensive Care Med 2023; 49: 727-759
  • 10 Chacko B, Peter JV, Tharyan P. et al. Pressure-controlled versus volume-controlled ventilation for acute respiratory failure due to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). 2015; (01) CD008807
  • 11 Yoshida T, Amato MBP, Kavanagh BP. et al. Impact of spontaneous breathing during mechanical ventilation in acute respiratory distress syndrome. Curr Opin Crit Care 2019; 25: 192-198
  • 12 Vaporidi K, Akoumianaki E, Telias I. et al. Respiratory drive in critically Ill patients. Pathophysiology and clinical implications. Am J Respir Crit Care Med 2020; 201: 20-32
  • 13 Telias I, Junhasavasdikul D, Rittayamai N. et al. Airway occlusion pressure as an estimate of respiratory drive and inspiratory effort during assisted ventilation. Am J Respir Crit Care Med 2020; 201: 1086-1098
  • 14 Bertoni M, Telias I, Urner M. et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care 2019; 23: 346
  • 15 Spieth PM, Koch T, Gama de Abreu M. Approaches to ventilation in intensive care. Dtsch Arztebl Int 2014; 111: 714-720
  • 16 Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI). S3-Leitlinie Invasive Beatmung und Einsatz extrakorporaler Verfahren bei akuter respiratorischer Insuffizienz. AWMF-Registernummer: 001/021. 2017 Accessed August 05, 2023 at: https://register.awmf.org/assets/guidelines/001–021l_S3_Invasive_Beatmung_2017–12.pdf
  • 17 Rose L, Schultz MJ, Cardwell CR. et al. Automated versus non-automated weaning for reducing the duration of mechanical ventilation for critically ill adults and children: a cochrane systematic review and meta-analysis. Crit Care 2015; 19: 48
  • 18 Amato MB, Meade MO, Slutsky AS. et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372: 747-755
  • 19 Goligher EC, Costa ELV, Yarnell CJ. et al. Effect of lowering Vt on mortality in acute respiratory distress syndrome varies with respiratory system elastance. Am J Respir Crit Care Med 2021; 203: 1378-1385
  • 20 Dianti J, Tisminetzky M, Ferreyro BL. et al. Association of positive end-expiratory pressure and lung recruitment selection strategies with mortality in acute respiratory distress syndrome: a systematic review and network meta-analysis. Am J Respir Crit Care Med 2022; 205: 1300-1310
  • 21 Briel M, Meade M, Mercat A. et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 2010; 303: 865-873
  • 22 Guldner A, Braune A, Ball L. et al. Comparative effects of volutrauma and atelectrauma on lung inflammation in experimental acute respiratory distress syndrome. Crit Care Med 2016; 44: e854-e865
  • 23 Chen L, Del Sorbo L, Grieco DL. et al. Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. A clinical trial. Am J Respir Crit Care Med 2020; 201: 178-187
  • 24 Klitgaard TL, Schjorring OL, Nielsen FM. et al. Higher versus lower fractions of inspired oxygen or targets of arterial oxygenation for adults admitted to the intensive care unit. Cochrane Database Syst Rev 2023; (09) CD012631
  • 25 Gottlieb J, Capetian P, Hamsen U. et al. S3-Leitlinie Sauerstoff in der Akuttherapie beim Erwachsenen. Pneumologie 2022; 76: 159-216
  • 26 Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013; 369: 2126-2136
  • 27 Guerin C, Albert RK, Beitler J. et al. Prone position in ARDS patients: why, when, how and for whom. Intensive Care Med 2020; 46: 2385-2396
  • 28 Gebistorf F, Karam O, Wetterslev J. et al. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev 2016; (06) CD002787
  • 29 Munshi L, Walkey A, Goligher E. et al. Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis. Lancet Respir Med 2019; 7: 163-172
  • 30 McNamee JJ, Gillies MA, Barrett NA. et al. Effect of lower tidal volume ventilation facilitated by extracorporeal carbon dioxide removal vs standard care ventilation on 90-day mortality in patients with acute hypoxemic respiratory failure: the REST randomized clinical trial. JAMA 2021; 326: 1013-1023