CC BY-NC-ND 4.0 · Geburtshilfe Frauenheilkd 2023; 83(09): 1138-1147
DOI: 10.1055/a-2150-9440
GebFra Science
Original Article

Whole Exome Analysis to Select Targeted Therapies for Patients with Metastatic Breast Cancer – A Feasibility Study

Ganz-Exom-Sequenzierung zur Bestimmung von zielgerichteten Therapien für Patientinnen mit metastasiertem Mammakarzinom – eine Machbarkeitsstudie
Bernadette Anna Sophia Jaeger
1   Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (Ringgold ID: RIN9170)
,
Natalia Krawczyk
1   Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (Ringgold ID: RIN9170)
,
Anna Sophia Japp
2   Institute of Pathology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (Ringgold ID: RIN39064)
,
Ellen Honisch
1   Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (Ringgold ID: RIN9170)
,
Karl Köhrer
3   Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (Ringgold ID: RIN9170)
,
Sibylle Scheuring
3   Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (Ringgold ID: RIN9170)
,
3   Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (Ringgold ID: RIN9170)
,
Hans Neubauer
1   Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (Ringgold ID: RIN9170)
,
Anne Kathrin Volkmer
1   Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (Ringgold ID: RIN9170)
,
Irene Esposito
2   Institute of Pathology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (Ringgold ID: RIN39064)
,
Eugen Ruckhäberle
1   Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (Ringgold ID: RIN9170)
,
Dieter Niederacher
1   Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (Ringgold ID: RIN9170)
,
Tanja Fehm
1   Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany (Ringgold ID: RIN9170)
› Author Affiliations
Supported by: Förderung Krebsforschung Nordrhein-Westfalen e.V

Abstract

Introduction

The purpose of this feasibility study was to select targeted therapies according to “ESMO Scale for Clinical Actionability of molecular Targets (ESCAT)”. Data interpretation was further supported by a browser-based Treatment Decision Support platform (MH Guide, Molecular Health, Heidelberg, Germany).

Patients

We applied next generation sequencing based whole exome sequencing of tumor tissue and peripheral blood of patients with metastatic breast cancer (n = 44) to detect somatic as well as germline mutations.

Results

In 32 metastatic breast cancer patients, data interpretation was feasible. We identified 25 genomic alterations with ESCAT Level of Evidence I or II in 18/32 metastatic breast cancer patients, which were available for evaluation: three copy number gains in HER2, two gBRCA1, two gBRCA2, six PIK3CA, one ESR1, three PTEN, one AKT1 and two HER2 mutations. In addition, five samples displayed Microsatellite instability high-H.

Conclusions

Resulting treatment options were discussed in a tumor board and could be recommended in a small but relevant proportion of patients with metastatic breast cancer (7/18). Thus, this study is a valuable preliminary work for the establishment of a molecular tumor board within the German initiative “Center for Personalized Medicine” which aims to shorten time for analyses and optimize selection of targeted therapies.

Zusammenfassung

Einleitung

Ziel dieser Machbarkeitsstudie war es, zielgerichtete Therapien entsprechend der ESCAT-Skala (ESMO Scale for Clinical Actionability of molecular Targets) zu bestimmen. Für die Interpretation der Daten wurde eine browserbasierte Plattform zur Entscheidungsfindung (MH Guide, Molecular Health, Heidelberg, Germany) eingesetzt.

Patientinnen

Es wurde eine Exomsequenzierung von Tumorgewebe und peripherem Blut von Patientinnen mit metastasiertem Mammakarzinom (n = 44) durchgeführt, um somatische sowie Keimbahnmutationen zu identifizieren.

Ergebnisse

Bei 32 Patientinnen mit metastasiertem Mammakarzinom konnte eine Dateninterpretation durchgeführt werden. Es wurden 25 genomische Veränderungen (ESCAT-Evidenzstufe I oder II) bei 18/32 Patientinnen mit metastasiertem Mammakarzinom identifiziert und abschließend ausgewertet: darunter fanden sich 3 Fälle mit höheren Vervielfältigungszahlen bei HER2, 2 gBRCA1-, 2 gBRCA2-, 6 PIK3CA-, 1 ESR1-, 3 PTEN-, 1 AKT1- und 2 HER2-Mutationen. Dazu kamen noch 5 Proben, die hochgradige Mikrosatelliteninstabilität aufwiesen.

Schlussfolgerung

Die daraus abzuleitenden Behandlungsoptionen wurden in einer Tumorkonferenz diskutiert und dann einer kleinen, aber relevanten Anzahl von Patientinnen mit metastasiertem Mammakarzinom (7/18) empfohlen. Die hier vorgestellte Arbeit stellt eine wertvolle Vorstudie dar, die dazu beitragen kann, molekulare Tumorboards innerhalb des Deutschen Netzwerks für Personalisierte Medizin zu etablieren. Ziel ist, die für Analysen benötigte Zeit zu verkürzen und die Wahl zielgerichteter Therapien zu optimieren.

Supporting information



Publication History

Received: 30 April 2023

Accepted after revision: 09 August 2023

Article published online:
12 September 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Cardoso F, Senkus E, Costa A. et al. 4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4). Ann Oncol 2018; 29: 1634-1657
  • 2 Priestley P, Baber J, Lolkema MP. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 2019; 575: 210-216
  • 3 Beroukhim R, Mermel CH, Porter D. et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010; 463: 899-905
  • 4 Ledermann J, Harter P, Gourley C. et al. Olaparib Maintenance Therapy in Patients With Platinum-Sensitive Relapsed Serous Ovarian Cancer. Obstet Gynecol Surv 2014; 69: 594-596
  • 5 González-Martín A, Pothuri B, Vergote I. et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N Engl J Med 2019; 381: 2391-2402
  • 6 Holloway RW, Gancedo MA, Fong PC. et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2018; 390: 1949-1961
  • 7 Robson M, Im SA, Senkus E. et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N Engl J Med 2017; 377: 523-533
  • 8 Litton JK, Rugo HS, Ettl J. et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N Engl J Med 2018; 379: 753-763
  • 9 de Bono J, Mateo J, Fizazi K. et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med 2020; 382: 2091-2102
  • 10 Golan T, Hammel P, Reni M. et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N Engl J Med 2019; 381: 317-327
  • 11 Scheidemann ER, Shajahan-Haq AN. Resistance to CDK4/6 inhibitors in estrogen receptor-positive breast cancer. Int J Mol Sci 2021; 22: 12292
  • 12 Ono M, Oba T, Shibata T. et al. The mechanisms involved in the resistance of estrogen receptor-positive breast cancer cells to palbociclib are multiple and change over time. J Cancer Res Clin Oncol 2021; 147: 3211-3224
  • 13 European Medicines Agency. EMA recommendations on DPD testing prior to treatment with fluorouracil, capecitabine, tegafur and flucytosine. Eur Med Agency 2020; 31: 3
  • 14 Kautto EA, Bonneville R, Miya J. et al. Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget 2017; 8: 7452-7463
  • 15 Mateo J, Chakravarty D, Dienstmann R. et al. A framework to rank genomic alterations as targets for cancer precision medicine: The ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol 2018; 29: 1895-1902
  • 16 Condorelli R, Mosele F, Verret B. et al. Genomic alterations in breast cancer: Level of evidence for actionability according to ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol 2019; 30: 365-373
  • 17 Chang Z, Liu X, Zhao W. et al. Identification and Characterization of the Copy Number Dosage-Sensitive Genes in Colorectal Cancer. Mol Ther Methods Clin Dev 2020; 18: 501-510
  • 18 Reinhardt K, Stückrath K, Hartung C. et al. PIK3CA-mutations in breast cancer. Breast Cancer Res Treat 2022; 196: 483-493
  • 19 Kast K, Rhiem K, Wappenschmidt B. et al. Prevalence of BRCA1/2 germline mutations in 21 401 families with breast and ovarian cancer. J Med Genet 2016; 53: 465-471
  • 20 Liu B, Morrison CD, Johnson CS. et al. Computational methods for detecting copy number variations in cancer genome using next generation sequencing: Principles and challenges. Oncotarget 2013; 4: 1868-1881
  • 21 Turner N, Pearson A, Sharpe R. et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res 2010; 70: 2085-2094
  • 22 Majewski IJ, Nuciforo P, Mittempergher L. et al. PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer. J Clin Oncol 2015; 33: 1334-1339
  • 23 Minuti G, Cappuzzo F, Duchnowska R. et al. Increased MET and HGF gene copy numbers are associated with trastuzumab failure in HER2-positive metastatic breast cancer. Br J Cancer 2012; 107: 793-799
  • 24 Chandarlapaty S, Sakr RA, Giri D. et al. Frequent mutational activation of the PI3K-AKT pathway in trastuzumab-resistant breast cancer. Clin Cancer Res 2012; 18: 6784-6791
  • 25 Giovannelli P, Di Donato M, Galasso G. et al. The androgen receptor in breast cancer. Front Endocrinol (Lausanne) 2018; 9: 492
  • 26 Serio PAMP, de Lima Pereira GF, Katayama MLH. et al. Somatic mutational profile of high-grade serous ovarian carcinoma and triple-negative breast carcinoma in young and elderly patients: Similarities and divergences. Cells 2021; 10: 3586
  • 27 Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018; 12: 3-20
  • 28 Jensen JD, Laenkholm A, Knoop A. PIK3CA Mutations May Be Discordant between Primary and Corresponding Metastatic Disease in Breast Cancer. Clin Cancer Res 2011; 17: 667-677
  • 29 Fusco N, Malapelle U, Fassan M. et al. PIK3CA Mutations as a Molecular Target for Hormone Receptor-Positive, HER2-Negative Metastatic Breast Cancer. Front Oncol 2021; 11: 644737
  • 30 Allegretti M, Fabi A, Buglioni S. et al. Tearing down the walls: FDA approves next generation sequencing (NGS) assays for actionable cancer genomic aberrations. J Exp Clin Cancer Res 2018; 37: 47
  • 31 Van Geelen CT, Savas P, Teo ZL. et al. Clinical implications of prospective genomic profiling of metastatic breast cancer patients. Breast Cancer Res 2020; 22: 91
  • 32 Crimini E, Repetto M, Aftimos P. et al. Precision medicine in breast cancer: From clinical trials to clinical practice. Cancer Treat Rev 2021; 98: 102223
  • 33 Ohlschlegel C, Zahel K, Kradolfer D. et al. HER2 genetic heterogeneity in breast carcinoma. J Clin Pathol 2011; 64: 1112-1116
  • 34 Van Bockstal MR, Agahozo MC, van Marion R. et al. Somatic mutations and copy number variations in breast cancers with heterogeneous HER2 amplification. Mol Oncol 2020; 14: 671-685
  • 35 Niikura N, Liu J, Hayashi N. et al. Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. J Clin Oncol 2012; 30: 593-599
  • 36 Reiter JG, Baretti M, Gerold JM. et al. An analysis of genetic heterogeneity in untreated cancers. Nat Rev Cancer 2019; 19: 639-650
  • 37 Ross JS, Gay LM, Wang K. et al. Non-Amplification ERBB2 Genomic Alterations in 5,605 Cases of Relapsed and Metastatic Breast Cancer: an Emerging Opportunity for anti-HER2 Targeted Therapies. Cancer 2016; 122: 2654-2662
  • 38 Hempel D, Ebner F, Garg A. et al. Real world data analysis of next generation sequencing and protein expression in metastatic breast cancer patients. Sci Rep 2020; 10: 10459
  • 39 Mosele F, Remon J, Mateo J. et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol 2020; 31: 1491-1505
  • 40 Sultova E, Westphalen CB, Jung A. et al. NGS-guided precision oncology in metastatic breast and gynecological cancer: first experiences at the CCC Munich LMU. Arch Gynecol Obstet 2021; 303: 1331-1345
  • 41 Sivapiragasam A, Ashok Kumar P, Sokol ES. et al. Predictive Biomarkers for Immune Checkpoint Inhibitors in Metastatic Breast Cancer. Cancer Med 2021; 10: 53-61
  • 42 Reinhardt F, Franken A, Fehm T. et al. Navigation through inter- and intratumoral heterogeneity of endocrine resistance mechanisms in breast cancer: A potential role for Liquid Biopsies?. Tumor Biol 2017; 39: 1010428317731511