Synthesis 2023; 55(23): 3954-3960
DOI: 10.1055/a-2152-0355
paper

Cobalt-Catalyzed Enantioselective Alkynylation of Oxabicyclic Alkenes

Lin-Wen Wei
a   Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, P. R. of China
,
Zhan-Cai Ma
a   Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, P. R. of China
,
Zhao-Qing Wang
a   Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, P. R. of China
,
Yu Zhao
b   Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
,
Yuan Huang
a   Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, P. R. of China
› Author Affiliations
We are grateful for the financial support from the National Natural Science Foundation of China (No.22001203), the Ministry of Education - Singapore (A-8000055-00-00), and the Faculty of Science, National University of Singapore (A-8001040-00-00).


Abstract

Efficient access to enantioenriched cyclic homopropargylic alcohols through an unprecedented cobalt-catalyzed asymmetric alkynylation of oxabicyclic alkenes has been developed. By using inexpensive cobalt salt/chiral bisphosphine ligand as the catalyst and easy-to-handle potassium alkynyltrifluoroborates as the nucleophile, synthetically valuable homopropargylic alcohols are obtained in moderate to good yields and high enantioselectivities.

Supporting Information



Publication History

Received: 07 July 2023

Accepted after revision: 10 August 2023

Accepted Manuscript online:
10 August 2023

Article published online:
22 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Kumar SV, Yen A, Lautens M, Guiry PJ. Chem. Soc. Rev. 2021; 50: 3013
    • 2a Lautens M, Fagnou K, Hiebert S. Acc. Chem. Res. 2003; 36: 48
    • 2b Fagnou K, Lautens M. Chem. Rev. 2003; 103: 169
    • 2c Lautens M, Fagnou K. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5455
    • 2d Lautens M, Colucci JT, Hiebert S, Smith ND, Bouchain G. Org. Lett. 2002; 4: 1879
    • 2e Lautens M, Fagnou K. J. Am. Chem. Soc. 2001; 123: 7170
    • 2f Zhang L, Le CM, Lautens M. Angew. Chem. Int. Ed. 2014; 53: 5951
    • 3a Rayabarapu DK, Cheng C.-H. Acc. Chem. Res. 2007; 40: 971
    • 3b Dotta P, Kumar PG. A, Pregosin PS, Albinati A, Rizzato S. Organometallics 2004; 23: 2295
    • 3c Imamoto T, Sugita K, Yoshida K. J. Am. Chem. Soc. 2005; 127: 11934
    • 3d Imamoto T, Kumada A, Yoshida K. Chem. Lett. 2007; 36: 500
    • 3e Ogura T, Yoshida K, Yanagisawa A, Imamoto T. Org. Lett. 2009; 11: 2245
    • 3f Endo K, Tanaka K, Ogawa M, Shibata T. Org. Lett. 2011; 13: 868
    • 3g Chen J, Zou L, Zeng C, Zhou Y, Fan B. Org. Lett. 2018; 20: 1283
    • 5a Imamoto T, Saitoh Y, Koide A, Ogura T, Yoshida K. Angew. Chem. Int. Ed. 2007; 46: 8636
    • 5b Yoshida K, Toyoshima T, Akashi N, Imamoto T, Yanagisawa A. Chem. Commun. 2009; 20: 2923
    • 5c Li M, Yan X.-X, Hong W, Zhu X.-Z, Cao B.-X, Sun J, Hou X.-L. Org. Lett. 2004; 6: 2833
  • 6 Zhang W, Zhu S.-F, Qiao X.-C, Zhou Q.-L. Chem. Asian J. 2008; 3: 2105
    • 7a Shurui Z, Kaige W, Xingping Z. Chin. J. Org. Chem. 2021; 41: 471
    • 7b Zeng Z, Yan F, Dai M, Yu Z, Liu F, Zhao Z, Bai R, Lan Y. Organometallics 2022; 41: 270
    • 7c Mo X, Huang H, Zhang G. ACS Catal. 2022; 12: 9944
    • 7d Agrawal T, Perez-Morales KD, Cort JA, Sieber JD. J. Org. Chem. 2022; 87: 6387
  • 8 Zhou H.-B, Comninos JS, Stossi F, Katzenellenbogen BS, Katzenellenbogen JA. J. Med. Chem. 2005; 48: 7261
  • 9 Long Y, Jiang H, Zou Z, Chen K, Fang Y. Chin. J. Chem. 2014; 32: 613
  • 10 Liu S, Li S, Chen H, Yang Q, Xu J, Zhou Y, Yuan M, Zeng W, Fan B. Adv. Synth. Catal. 2014; 356: 2960
  • 11 Huang Y, Huang R.-Z, Zhao Y. J. Am. Chem. Soc. 2016; 138: 6571
  • 12 Huang Y, Ma C, Lee YX, Huang R.-Z, Zhao Y. Angew. Chem. Int. Ed. 2015; 54: 13696
  • 13 Zhu D, Zhao Y, Chong Q, Meng F. Chin. J. Chem. 2022; 40: 190
    • 14a For selected reviews, see: Yoshikai N. Synthesis 2019; 51: 135

    • For selected examples, see:
    • 14b Nishimura T, Sawano T, Ou K, Hayashi T. Chem. Commun. 2011; 47: 10142
    • 14c Wang L, Lu W, Zhang J, Chong Q, Meng F. Angew. Chem. Int. Ed. 2022; 61: e202205624
    • 14d Lu W, Zhao Y, Meng F. J. Am. Chem. Soc. 2022; 144: 5233
    • 14e Wang L, Wang L, Li M, Chong Q, Meng F. J. Am. Chem. Soc. 2021; 143: 12755
    • 14f Zhang H, Huang J, Meng F. Cell Rep. Phys. Sci. 2021; 2: 100406
    • 14g Huang W, Meng F. Angew. Chem. Int. Ed. 2021; 60: 2694
    • 14h Whyte A, Bajohr J, Torelli A, Lautens M. Angew. Chem. Int. Ed. 2020; 59: 16409
    • 14i Whyte A, Torelli A, Mirabi B, Prieto L, Rodriguez JF, Lautens M. J. Am. Chem. Soc. 2020; 142: 9510
    • 14j Chen J.-F, Li C. Org. Lett. 2020; 22: 4686
    • 14k Zhang H, Huang W, Wang T, Meng F. Angew. Chem. Int. Ed. 2019; 58: 11049
    • 14l Li K, Wei L, Sun M, Li B, Liu M, Li CH. Angew. Chem. Int. Ed. 2021; 60: 20204
  • 15 Sawano T, Ou K, Nishimura T, Hayashi T. Chem. Commun. 2012; 48: 6106
    • 16a Huang R.-Z, Ma Z.-C, Huang Y, Zhao Y. J. Org. Chem. 2023; 88: 7755
    • 16b Chen J.-F, Li CK. Org. Lett. 2020; 22: 4686
  • 17 Nguyen TN, May JA. Org. Lett. 2018; 20: 3618
    • 18a Zhu J, Tsui GC, Lautens M. Angew. Chem. Int. Ed. 2012; 51: 12353
    • 18b Yoshida K, Toyoshima T, Akashi N, Imamoto T, Yanagisawa A. Chem. Commun. 2009; 2923
    • 18c Luo R, Liao J, Xie L, Tang W, Chan AS. C. Chem. Commun. 2013; 49: 9959
  • 19 Rayabarapu DK, Chiou C.-F, Cheng C.-H. Org. Lett. 2002; 4: 1679