Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(23): 3954-3960
DOI: 10.1055/a-2152-0355
DOI: 10.1055/a-2152-0355
paper
Cobalt-Catalyzed Enantioselective Alkynylation of Oxabicyclic Alkenes
We are grateful for the financial support from the National Natural Science Foundation of China (No.22001203), the Ministry of Education - Singapore (A-8000055-00-00), and the Faculty of Science, National University of Singapore (A-8001040-00-00).
Abstract
Efficient access to enantioenriched cyclic homopropargylic alcohols through an unprecedented cobalt-catalyzed asymmetric alkynylation of oxabicyclic alkenes has been developed. By using inexpensive cobalt salt/chiral bisphosphine ligand as the catalyst and easy-to-handle potassium alkynyltrifluoroborates as the nucleophile, synthetically valuable homopropargylic alcohols are obtained in moderate to good yields and high enantioselectivities.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2152-0355.
- Supporting Information
Publication History
Received: 07 July 2023
Accepted after revision: 10 August 2023
Accepted Manuscript online:
10 August 2023
Article published online:
22 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Kumar SV, Yen A, Lautens M, Guiry PJ. Chem. Soc. Rev. 2021; 50: 3013
- 2a Lautens M, Fagnou K, Hiebert S. Acc. Chem. Res. 2003; 36: 48
- 2b Fagnou K, Lautens M. Chem. Rev. 2003; 103: 169
- 2c Lautens M, Fagnou K. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5455
- 2d Lautens M, Colucci JT, Hiebert S, Smith ND, Bouchain G. Org. Lett. 2002; 4: 1879
- 2e Lautens M, Fagnou K. J. Am. Chem. Soc. 2001; 123: 7170
- 2f Zhang L, Le CM, Lautens M. Angew. Chem. Int. Ed. 2014; 53: 5951
- 3a Rayabarapu DK, Cheng C.-H. Acc. Chem. Res. 2007; 40: 971
- 3b Dotta P, Kumar PG. A, Pregosin PS, Albinati A, Rizzato S. Organometallics 2004; 23: 2295
- 3c Imamoto T, Sugita K, Yoshida K. J. Am. Chem. Soc. 2005; 127: 11934
- 3d Imamoto T, Kumada A, Yoshida K. Chem. Lett. 2007; 36: 500
- 3e Ogura T, Yoshida K, Yanagisawa A, Imamoto T. Org. Lett. 2009; 11: 2245
- 3f Endo K, Tanaka K, Ogawa M, Shibata T. Org. Lett. 2011; 13: 868
- 3g Chen J, Zou L, Zeng C, Zhou Y, Fan B. Org. Lett. 2018; 20: 1283
- 4a Lautens M, Dockendorff C. Org. Lett. 2003; 5: 3695
- 4b Murakami M, Igawa H. Chem. Commun. 2002; 390
- 4c Lautens M, Dockendorff C, Fagnou K, Malicki A. Org. Lett. 2002; 4: 1311
- 5a Imamoto T, Saitoh Y, Koide A, Ogura T, Yoshida K. Angew. Chem. Int. Ed. 2007; 46: 8636
- 5b Yoshida K, Toyoshima T, Akashi N, Imamoto T, Yanagisawa A. Chem. Commun. 2009; 20: 2923
- 5c Li M, Yan X.-X, Hong W, Zhu X.-Z, Cao B.-X, Sun J, Hou X.-L. Org. Lett. 2004; 6: 2833
- 6 Zhang W, Zhu S.-F, Qiao X.-C, Zhou Q.-L. Chem. Asian J. 2008; 3: 2105
- 7a Shurui Z, Kaige W, Xingping Z. Chin. J. Org. Chem. 2021; 41: 471
- 7b Zeng Z, Yan F, Dai M, Yu Z, Liu F, Zhao Z, Bai R, Lan Y. Organometallics 2022; 41: 270
- 7c Mo X, Huang H, Zhang G. ACS Catal. 2022; 12: 9944
- 7d Agrawal T, Perez-Morales KD, Cort JA, Sieber JD. J. Org. Chem. 2022; 87: 6387
- 8 Zhou H.-B, Comninos JS, Stossi F, Katzenellenbogen BS, Katzenellenbogen JA. J. Med. Chem. 2005; 48: 7261
- 9 Long Y, Jiang H, Zou Z, Chen K, Fang Y. Chin. J. Chem. 2014; 32: 613
- 10 Liu S, Li S, Chen H, Yang Q, Xu J, Zhou Y, Yuan M, Zeng W, Fan B. Adv. Synth. Catal. 2014; 356: 2960
- 11 Huang Y, Huang R.-Z, Zhao Y. J. Am. Chem. Soc. 2016; 138: 6571
- 12 Huang Y, Ma C, Lee YX, Huang R.-Z, Zhao Y. Angew. Chem. Int. Ed. 2015; 54: 13696
- 13 Zhu D, Zhao Y, Chong Q, Meng F. Chin. J. Chem. 2022; 40: 190
- 14a For selected reviews, see: Yoshikai N. Synthesis 2019; 51: 135
- 14b Nishimura T, Sawano T, Ou K, Hayashi T. Chem. Commun. 2011; 47: 10142
- 14c Wang L, Lu W, Zhang J, Chong Q, Meng F. Angew. Chem. Int. Ed. 2022; 61: e202205624
- 14d Lu W, Zhao Y, Meng F. J. Am. Chem. Soc. 2022; 144: 5233
- 14e Wang L, Wang L, Li M, Chong Q, Meng F. J. Am. Chem. Soc. 2021; 143: 12755
- 14f Zhang H, Huang J, Meng F. Cell Rep. Phys. Sci. 2021; 2: 100406
- 14g Huang W, Meng F. Angew. Chem. Int. Ed. 2021; 60: 2694
- 14h Whyte A, Bajohr J, Torelli A, Lautens M. Angew. Chem. Int. Ed. 2020; 59: 16409
- 14i Whyte A, Torelli A, Mirabi B, Prieto L, Rodriguez JF, Lautens M. J. Am. Chem. Soc. 2020; 142: 9510
- 14j Chen J.-F, Li C. Org. Lett. 2020; 22: 4686
- 14k Zhang H, Huang W, Wang T, Meng F. Angew. Chem. Int. Ed. 2019; 58: 11049
- 14l Li K, Wei L, Sun M, Li B, Liu M, Li CH. Angew. Chem. Int. Ed. 2021; 60: 20204
- 15 Sawano T, Ou K, Nishimura T, Hayashi T. Chem. Commun. 2012; 48: 6106
- 16a Huang R.-Z, Ma Z.-C, Huang Y, Zhao Y. J. Org. Chem. 2023; 88: 7755
- 16b Chen J.-F, Li CK. Org. Lett. 2020; 22: 4686
- 17 Nguyen TN, May JA. Org. Lett. 2018; 20: 3618
- 18a Zhu J, Tsui GC, Lautens M. Angew. Chem. Int. Ed. 2012; 51: 12353
- 18b Yoshida K, Toyoshima T, Akashi N, Imamoto T, Yanagisawa A. Chem. Commun. 2009; 2923
- 18c Luo R, Liao J, Xie L, Tang W, Chan AS. C. Chem. Commun. 2013; 49: 9959
- 19 Rayabarapu DK, Chiou C.-F, Cheng C.-H. Org. Lett. 2002; 4: 1679
For selected examples, see: