Zeitschrift für Orthomolekulare Medizin 2023; 21(03): 11-22
DOI: 10.1055/a-2153-9332
Wissen

Sieben auf einen Streich: Neuroprotektive (Mikro-)Nährstoffe als kognitive Enhancer

Uwe Gröber
,
Hans-Peter Friedrichsen

Zusammenfassung

Eine optimale kognitive Leistungsfähigkeit ist in allen Lebensphasen für die Vitalität von hohem Stellenwert. Insb. in der Kindheit und im Adoleszentenalter haben Ernährungseinflüsse entscheidenden Einfluss auf die Hirnentwicklung und kognitive Leistungsfähigkeit. Mikronährstoffe spielen daher nicht nur eine essenzielle Rolle für die allgemeine Zellentwicklung und Zellfunktion, sondern auch bei zahlreichen neurologischen Funktionen, wie der Neurotransmittersynthese, Myelogenese sowie der Bildung von Neurotrophinen. Eine adäquate diätetische Versorgung mit gehirnaktiven (Mikro-)Nährstoffen wie Vitaminen, Mineralien und ω-3-Fettsäuren ist daher bei Schulkindern von elementarer Bedeutung für eine gesunde Hirnentwicklung.



Publikationsverlauf

Artikel online veröffentlicht:
11. Oktober 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Hiu J, Fang M, Pike JR. et al. Prediabetes, intervening diabetes and subsequent risk of dementia: the Atherosclerosis Risk in Communities (ARIC) study. Diabetologia 2023; 66: 1442-1449
  • 2 Mauz E, Lange M, Houben R. et al. Cohort profile: KiGGS cohort longitudinal study on the health of children, adolescents and young adults in Germany. Int J Epidemiol 2020; 49: 375-375k
  • 3 Moosburger R, Barbosa CL, Haftenberger M. et al. Fast-Food-Konsum bei 12- bis 17-Jährigen in Deutschland – Ergebnisse aus EsKiMo II. J Health Monit 2020; 5: 3-19
  • 4 Mensink GBM, Bauch A, Vohmann C. et al. EsKiMo – the nutrition module in the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2007; 50: 902-908
  • 5 Yau PL, Castro MG, Tagani A. et al. Obesity and metabolic syndrome and functional and structural brain impairments in adolescence. Pediatrics 2012; 130: e856-e864
  • 6 Alfaro FJ, Gavrieli A, Saade-Lemus P. et al. White matter microstructure and cognitive decline in metabolic syndrome: a review of diffusion tensor imaging. Metabolism 2018; 78: 52-68
  • 7 Boccara E, Golan S, Beeri MS. et al. The association between regional adiposity, cognitive function, and dementia-related brain changes: a systematic review. Front Med (Lausanne) 2023; 10: 1160426
  • 8 Forster LJ, Vogel M, Stein R. et al. Mental health in children and adolescents with overweight or obesity. BMC Public Health 2023; 23: 135
  • 9 Muscaritoli M. The Impact of Nutrients on Mental Health and Well-Being: Insights From the Literature. Front Nutr 2021; 8: 656290
  • 10 Kadosh KC, Muhardi L, Parikh P. et al. Nutritional Support of Neurodevelopment and Cognitive Function in Infants and Young Children – An Update and Novel Insights. Nutrients 2021; 13: 199
  • 11 Schögl M, Holick MF. Vitamin D and neurocognitive function. Clin Interv Aging 2014; 9: 559-568
  • 12 Gröber U, Holick MF. Vitamin D: Die Heilkraft des Sonnenvitamins. 4., aktual. und erw. Aufl. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2020
  • 13 Gall Z, Szekely O. Role of Vitamin D in Cognitive Dysfunction: New Molecular Concepts and Discrepancies between Animal and Human Findings. Nutrients 2021; 13: 3672
  • 14 Cui X, Eyles DW. Vitamin D and the Central Nervous System: Causative and Preventative Mechanisms in Brain Disorders. Nutrients 2022; 14: 4353
  • 15 Lason W, Jantas D, Leskiewicz M. et al. The Vitamin D Receptor as a Potential Target for the Treatment of Age-Related Neurodegenerative Diseases Such as Alzheimer’s and Parkinson’s Diseases: A Narrative Review. Cells 2023; 12: 660
  • 16 Glabska D, Kolota A, Lachowocz K. et al. The Influence of Vitamin D Intake and Status on Mental Health in Children: A Systematic Review. Nutrients 2021; 13: 952
  • 17 Von Schacky C. Omega-3 Fatty Acids in Pregnancy – The Case for a Target Omega-3 Index. Nutrients 2020; 12: 898
  • 18 Gröber U. Omega-3: Gesünder leben mit den essentiellen Fettsäuren. München: Südwest Verlag; 2021
  • 19 DiNicolantonio JJ, O’Keefe JH. The Importance of Marine Omega-3s for Brain Development and the Prevention and Treatment of Behavior, Mood, and Other Brain Disorders. Nutrients 2020; 12: 2333
  • 20 Dighiri I, Alsubaie AM, Hakami FM. et al. Effects of Omega-3 Polyunsaturated Fatty Acids on Brain Functions: A Systematic Review. Cureus 2022; 14: e30091
  • 21 Interview von Schacky, 09.04.2023: Omega-3 im Spitzensport. In: Gröber U. Metabolic Tuning – Mikronährstoffe im Leistungssport. 2. Aufl., Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2023
  • 22 Vinas BR, Barba LR, Ngo J. et al. Projected prevalence of inadequate nutrient intakes in Europe. Ann Nutr Metab 2011; 59: 84-95
  • 23 Grantham-McGregor S, Ani C. A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr 2001; 131: 649S-666S
  • 24 de Silva A, Atukorala S, Weerasinghe I. et al. Iron supplementation improves iron status and reduces morbidity in children with or without upper respiratory tract infections: a randomized controlled study in Colombo, Sri Lanka. Am J Clin Nutr 2003; 77: 234-241
  • 25 Sachdev H, Gera T, Nestel P. Effect of iron supplementation on mental and motor development in children: systematic review of randomised controlled trials. Public Health Nutr 2005; 8: 117-132
  • 26 Brutsaert TD, Hernandez-Cordero S, Rivera J. et al. Iron supplementation improves progressive fatigue resistance during dynamic knee extension exercise in iron-depeleted, nonanemic women. Am J Clin Nutr 2003; 77: 441-448
  • 27 Cavalli-Sforza T, Berger J, Smitasiri S, Viteri F. Weekly iron-folic acid supplementation of women of reproductive age: impact overview, lessons learned, expansion plans, and contributions toward achievement of the millennium development goals. Nutr Rev 2005; 63 (12 Pt2) S152-S158
  • 28 Gracia-Marco L, Valtueña J, Ortega FB. et al. Iron and vitamin status biomarkers and its association with physical fitness in adolescents: the HELENA study. J Appl Physiol 2012; 113: 566-573
  • 29 Cacu LT, Hanley-Cook GT, Huybrechts I. et al. Relative validity of the Planetary Health Diet Index by comparison with usual nutrient intakes, plasma food consumption biomarkers, and adherence to the Mediterranean diet among European adolescents: the HELENA study. Eur J Nutr 2023; DOI: 10.1007/s00394-023-03171-3.
  • 30 Shoemaker ME, Salmon OF, Smith CM. et al. Influences of Vitamin D and Iron Status on Skeletal Muscle Health: A Narrative Review. Nutrients 2022; 14: 2717
  • 31 Gröber U, Schmidt J, Kisters K. Magnesium in Prevention and Therapy. Nutrients 2015; 7: 8199-8226
  • 32 Gröber U. Magnesium and Drugs. Int J Mol Sci 2019; 20: 2094
  • 33 Chu N, Chan TY, Chu YK. et al. Higher dietary magnesium and potassium intake are associated with lower body fat in people with impaired glucose tolerance. Front Nutr 2023; 10: 1169705
  • 34 Pilchova I, KLacanova K, Tatarkova Z. et al. The Involvement of Mg2+ in Regulation of Cellular and Mitochondrial Functions. Oxid Med Cell Longev 2017; 2017: 6797460
  • 35 Kravtsov KS, Ivashenko L, Dotsenko V. et al. Study of the Magnesium Comenate Structure, its Neuroprotectiv and Stress-protective Activity. Int J Mol Sci 2023; 24: 8046
  • 36 Alateeq K, Walsh EI, Cherbiun N. et al. Dietary magnesium intake is related to larger brain volumes and lower white matter lesions with notable sex differences. Eur J Nutr 2023; 62: 2039-2051
  • 37 González-Gross M, Benser J. et al. Gender and age influence blood folate, vitamin B12, vitamin B6, and homocysteine levels in European adolescents: the Helena Study. Nutr Res 2012; 32: 817-826
  • 38 Azzini E, Ruggeri S, Polito A. Homocysteine: Its Possible Emerging Role in At-Risk Population Groups. Int J Mol Sci 2020; 21: 1421
  • 39 Gröber U, Kisters K, Schmidt J. Neuroenhancement with Vitamin B12: Underestimated neurological significance. Nutrients 2013; 5: 5031-5045
  • 40 Rajagopalan P, Hua X, Toga AW. et al. Homocysteine effects on brain volumes mapped in 732 elderly individuals. Neuroreport 2011; 22: 391-395
  • 41 Moore E, Mander A, Ames D. et al. Cognitive impairment and vitamin B12: a review. Int Psychogeriatr 2012; 24: 541-56
  • 42 Smith AD, Smith SM, de Jager CA. et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One 2010; 5: e12244
  • 43 de Jager CA, Oulhaj A, Jacoby R. et al. Cognitive and clinical outcomes of homocysteine-lowering B vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry 2012; 27: 592-600
  • 44 Cheng D, Kong H, Pang W. et al B vitamin supplementation improves cognitive function in the middle aged and elderly with hyperhomocysteinemia. Nutr Neurosci. 2014 [Epub ahead of print]
  • 45 Wald DS, Kasturiratne A, Simmonds M. Serum homocysteine and dementia: meta-analysis of eight cohort studies including 8669 participants. Alzheimers Dement 2011; 7: 412-417
  • 46 Schomburg L, Schweizer U, Holtmann B. et al. Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem J 2003; 370: 397-402
  • 47 Hill KE, Zhou J, McMahan WJ. et al. Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem 2003; 278: 13640-13646
  • 48 Schweizer U, Bräer AU, Köhrle J. et al. Selenium and brain function: a poorly recognized liaison. Brain Res Brain Res Rev 2004; 45: 164-178
  • 49 Schweizer U, Bohleber S, Wenchao Z. et al. The Neurobiology of Selenium: Looking Back and to the Future. Front Neurosci 2021; 15: 652099
  • 50 Kryuko GV, Castellano S, Novoselov SV. et al. Characterization of mammalian selenoproteomes. Science 2003; 300: 1439-43
  • 51 Schomburg L. Selenoprotein P – Selenium transport protein, enzyme and biomarker of selenium status. Free Radic Biol Med 2022; 191: 150-163
  • 52 Olson GE, Winfrey V, Hill EH. et al. Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J Biol Chem 2008; 283: 6854-6860
  • 53 Olson GE, Winfrey VP, Nagdas SK. et al. Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem 2007; 282: 12290-7
  • 54 Görlich CL, Sun Q, Roggenkamp V. et al. Selenium Status in Paediatric Patients with Neurodevelopmental Diseases. Nutrients 2022; 14: 2375
  • 55 Skröder H, Kippler M, Tofail F, Vahter M. Early-Life Selenium Status and Cognitive Function at 5 and 10 Years of Age in Bangladeshi Children. Environ Health Perspect 2017; 125: 117003
  • 56 Skröder HM, Hamadani JD, Tofail F. Selenium status in pregnancy influences children's cognitive function at 1.5 years of age. Clin Nutr 2015; 34: 923-930
  • 57 Jones GD, Droz B, Greve P. et al. Selenium deficiency risk predicted to increase under future climate change. Proc Natl Acad Sci USA 2017; 114: 2848-2853
  • 58 Rayman M. Selenium and human health. Lancet 2012; 379: 1256-1268
  • 59 Ferreira RLU, Sena-Evangelista KCM, de Azevedo EP. et al. Selenium in Human health and gut microflora: Bioavailability of Selenocompounds and Relationship with Diseases. Front Nutr 2021; 8: 685317
  • 60 Zhang ZH, Song GL. Roles of Selenoproteins in Brain Function and the Potential Mechanism of Selenium in Alzheimer’s Disease. Front Neurosci 2021; 15: 646518