CC BY 4.0 · SynOpen 2023; 07(03): 408-413
DOI: 10.1055/a-2155-2950
spotlight

Recent Applications of TEMPO in Organic Synthesis and Catalysis

Ravi Varala
a   Scrips Pharma, Mallapur, Hyderabad 500 076, Telangana, India
,
Vittal Seema
b   Department of Chemistry, RGUKT Basar, Mudhole 504 107, Telangana, India
› Author Affiliations


Abstract

In this spotlight article, authors highlighted the applications of TEMPO in organic synthesis and catalysis starting from 2015 to date.



Publication History

Received: 24 July 2023

Accepted after revision: 16 August 2023

Accepted Manuscript online:
16 August 2023

Article published online:
07 September 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lebedev OL, Kazarnovskii SN. Zhur. Obshch. Khim. 1960; 30: 1631

    • For selected reviews, see:
    • 2a Barriga S. Synlett 2001; 563
    • 2b Vogler T, Studer A. Synthesis 2008; 1979
    • 2c Zhou Z, Liu L. Curr. Org. Chem. 2014; 18: 459
    • 2d Lang X, Zhao J. Chem. Asian J. 2018; 13: 599
    • 2e Beejapur HA, Zhang Q, Hu K, Zhu L, Wang J, Ye Z. ACS Catal. 2019; 9: 2777
    • 2f Zhuang H, Li H, Zhang S, Yin Y, Han F, Sun C, Miao C. Chin. Chem. Lett. 2019; 31: 39
    • 2g Ma Z, Mahmudov KT, Aliyeva VA, Gurbanov AV, Pombeiro AJ. L. Coord. Chem. Rev. 2020; 423: 213482
    • 2h Prakash N, Rajeev R, John A, Vijayan A, George L, Varghese A. ChemistrySelect 2021; 6: 7691
    • 2i Lee J, Hong S, Heo Y, Kang H, Kim M. Dalton Trans. 2021; 50: 14081
  • 3 Mołoń M, Szlachcikowska D, Stępień K, Kielar P, Galiniak S. Biochim. Biophys. Acta, Mol. Cell Res. 2023; 1870: 119412
  • 4 Pavithra D, Ethiraj KR. Polycyclic Aromat. Compd. 2022; 42: 1078
  • 5 Cai Y, Jalan A, Kubosumi AR, Castle L. Org. Lett. 2015; 17: 488
  • 6 Zhang G, Yu Y, Zhao Y, Xie X, Ding C. Synlett 2017; 28: 1373
  • 7 Chu X.-Q, Cao W.-B, Xu X.-P, Ji S.-J. J. Org. Chem. 2017; 82: 1145
  • 8 Zhang J.-L, Wu M.-W, Chen F, Han B. J. Org. Chem. 2016; 81: 11994
  • 9 Chen G, Wang Z, Zhang X, Fan X. J. Org. Chem. 2017; 82: 11230
  • 10 Xu Z.-M, Li H.-X, Young DJ, Zhu D.-L, Li H.-Y, Lang J.-P. Org. Lett. 2019; 21: 237
    • 11a Vadivelu M, Sampath S, Muthu K, Karthikeyan K, Praveen C. J. Org. Chem. 2019; 84: 13636
    • 11b An H, Mai S, Xuan Q, Zhou Y, Song Q. J. Org. Chem. 2019; 84: 401
    • 11c Chen F, Yang X.-L, Wu Z.-W, Han B. J. Org. Chem. 2016; 81: 3042
  • 12 Hu W, Lin J.-P, Song L.-R, Long Y.-Q. Org. Lett. 2015; 17: 1268
  • 13 Lee JW, Lim S, Maienshein DN, Liu P, Ngai M.-Y. Angew. Chem. Int. Ed. 2020; 59: 21475
  • 14 Zhang G, Li S, Lei J, Zhang G, Xie X, Ding C, Liu R. Synlett 2016; 27: 956
  • 15 Zhang X.-W, Jiang G.-Q, Lei S.-H, Shan X.-H, Qu J.-P, Kang Y.-B. Org. Lett. 2021; 23: 1611
  • 16 Jiang X, Zhang J, Ma S. J. Am. Chem. Soc. 2016; 138: 8344
  • 17 Furukawa K, Shibuya M, Yamamoto Y. Org. Lett. 2015; 17: 2282
  • 18 Noh J.-H, Kim J. J. Org. Chem. 2015; 80: 11624
  • 19 Zhang G, Xing Y, Xu S, Ring C, Shan S. Synlett 2018; 29: 1232
  • 20 Chamorro-Arenas D, Osorio-Nieto U, Quintero L, Hernández-García L, Sartillo-Piscil F. J. Org. Chem. 2018; 83: 15333
  • 21 Liu J, Huang J, Jia K, Du T, Zhao C, Zhu R, Liu X. Synthesis 2020; 52: 763
  • 22 Zhang Z, Gao Y, Liu Y, Li J, Xie H, Li H, Wang W. Org. Lett. 2015; 17: 5492
  • 23 Xie X, Stahl SS. J. Am. Chem. Soc. 2015; 137: 3767
  • 24 Wu Y, Yi H, Lei A. ACS Catal. 2018; 8: 1192
  • 25 Lu W, Shen Z. Org. Lett. 2019; 21: 142

    • See also:
    • 26a Carolina O, Pandeirada CO, Merkx DW. H, Janssen H.-G, Westphal Y, Schols HA. Carbohydr. Polym. 2021; 259: 117781
    • 26b Hao J, Wu F, Tang R, Sun Y, Liu D, Zhang Z. Int. J. Biol. Macromol. 2020; 151: 740
    • 26c Isogai A, Hanninen T, Fujisawa S, Saito T. Prog. Polym. Sci. 2018; 86: 122
    • 26d Pierre G, Punta C, Delattre C, Melone L, Dubessay P, Fiorati A, Patori N, Galante YM, Michaud P. Carbohydr. Polym. 2017; 165: 71

      For recent examples, see:
    • 27a Vereshchagin AA, Kalnin AY, Volkov AI, Lukyanov DA, Levin OV. Energies 2022; 15: 2699
    • 27b Prakash N, Rajeev R, John A, Vijayan A, George L, Varghese A. ChemistrySelect 2021; 6: 7691
    • 27c Yi J, Tang D, Song D, Wu X, Shen Z, Li M. J. Solid State Electrochem. 2015; 19: 2291
    • 27d Takahashi K, Korolev K, Tsuji K, Oyaizu K, Nishide H, Bryuzgin E, Navrotskiy A, Novakov I. Polymer 2015; 68: 310
    • 27e Esser B, Dolhem F, Becuwe M, Poizot P, Vlad A, Brandell D. J. Power Sources 2021; 482: 228814
    • 27f Goujon N, Casado N, Patil N, Marcilla R, Mecerreyes D. Prog. Polym. Sci. 2021; 122: 101449
    • 27g Xu L, Ji L, Wang G, Zhang C, Su C. Ionics 2016; 22: 1377
    • 27h Zhang Y, Park AM, McMillan SR, Harmon NJ, Flatté ME, Fuchs GD, Ober CK. Chem. Mater. 2018; 30: 4799
    • 27i Vereshchagin AA, Lukyanov DA, Kulikov IR, Panjwani NA, Alekseeva EA, Behrends J, Levin OV. Batteries Supercaps 2021; 4: 336
    • 27j Hatakeyama-Sato K, Wakamatsu H, Matsumoto S, Sadakuni K, Matsuoka K, Nagatsuka T, Oyaizu K. Macromol. Rapid Commun. 2021; 42: 2000607
    • 27k Zhang K, Xie Y, Monteiro MJ, Jia Z. Energy Storage Mater. 2021; 35: 122
    • 27l Aqil M, Aqil A, Ouhib F, El Idrissi A, Dahbi M, Detrembleur C, Jérôme C. Eur. Polym. J. 2021; 152: 110453
    • 27m Zhu J, Zhu T, Tuo H, Zhang W. Polymers 2019; 11: 2076
    • 27n Hickey DP, Milton RD, Chen D, Sigman MS, Minteer SD. ACS Catal. 2015; 5: 5519
  • 28 Yamada A, Abe M, Nishimura Y, Ishizaka S, Namba M, Nakashima T, Shimoji K, Hattori N. Beilstein J. Org. Chem. 2019; 15: 863