Synlett 2023; 34(19): 2336-2340
DOI: 10.1055/a-2158-1015
letter

Metal-Free Catalyzed Defluorinative O-Arylation of Pyrazolones with Polyfluoroarenes

Liu Yang
,
Tao Qin
,
Bin Liu
This work was supported by the National Natural Science Foundation of China (No. 22201158) and the Higher Education Discipline Innovation Project (111 Project of China, No. D20015).


Abstract

An efficient and general method for defluorinative O-arylation of pyrazolones has been successfully developed under metal-free conditions. This methodology allows for the synthesis of desired products by using a wide range of pyrazolones and polyfluoroarenes as starting materials. The compatibility of various substrates was demonstrated, ensuring the applicability of this method. Furthermore, the synthesis of the target compounds at a gram scale and the ability to perform late-stage modifications highlight the potential of this approach in preparative pharmaceutical synthesis and organofluorine chemistry.

Supporting Information



Publication History

Received: 24 July 2023

Accepted after revision: 22 August 2023

Accepted Manuscript online:
22 August 2023

Article published online:
27 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Xiao JJ, Liao M, Chu MJ, Ren ZL, Zhang X, Lv XH, Cao HQ. Molecules 2015; 20: 807
    • 2a Meanwell NA. J. Med. Chem. 2018; 61: 5822
    • 2b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
  • 3 He J, Li Z, Dhawan G, Zhang W, Sorochinsky AE, Butler G, Soloshonok VA, Han J. Chin. Chem. Lett. 2023; 34: 107578
    • 4a Tang ML, Bao Z. Chem. Mater. 2011; 23: 446
    • 4b Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd ed.. Wiley-VCH; Weinheim: 2013: 1
    • 5a Braun T, Perutz RN, Sladek MI. Chem. Commun. 2001; 21: 2254
    • 5b Baron A, Sandford G, Slater R, Yufit DS, Howard JA, Vong A. J. Org. Chem. 2005; 70: 9377
    • 5c Liu C, Wang H, Xing X, Xu Y, Ma JA, Zhang B. Tetrahedron Lett. 2013; 54: 4649
    • 5d Ahrens T, Kohlmann J, Ahrens M, Braun T. Chem. Rev. 2015; 115: 931
    • 6a Brooke GM. J. Fluorine Chem. 1997; 86: 1
    • 6b Ahrens T, Kohlmann J, Ahrens M, Braun T. Chem. Rev. 2015; 115: 931
    • 6c Arora A, Weaver JD. Acc. Chem. Res. 2016; 49: 2273
    • 6d Vaidyanathaswamy R, Radha K, Dharani M, Raguraman TS, Anand R. J. Fluorine Chem. 2012; 144: 33
    • 6e Lu W, Gao J, Yang JK, Liu L, Zhao Y, Wu HC. Chem. Sci. 2014; 5: 1934
    • 6f Teegardin KA, Weaver JD. Chem. Commun. 2017; 53: 4771
    • 6g Qin J, Zhu S, Chu L. Organometallics 2021; 40: 2246
    • 6h Chen YJ, Deng WH, Guo JD, Ci RN, Zhou C, Chen B, Li XB, Guo XN, Liao RZ, Tung CH, Wu LZ. J. Am. Chem. Soc. 2022; 144: 17261
    • 6i Braun T, Izundu J, Steffen A, Neumann B, Stammler HG. Dalton Trans. 2006; 43: 5118
    • 6j Schaub T, Backes M, Radius U. J. Am. Chem. Soc. 2006; 128: 15964
    • 6k Nakamura Y, Yoshikai N, Ilies L, Nakamura E. Org. Lett. 2012; 14: 3316
    • 6l Li X, Fu B, Zhang Q, Yuan X, Zhang Q, Xiong T, Zhang Q. Angew. Chem. Int. Ed. 2020; 59: 23056
    • 6m Zhao Y, Fu B, Wang S, Li Y, Yuan X, Yin J, Xiong T, Zhang Q. Org. Lett. 2023; 25: 2492
    • 6n Wu FP, Gu XW, Geng HQ, Wu XF. Chem. Sci. 2023; 14: 2342
    • 7a Yokoyama N, Ritter B, Neubert AD. J. Med. Chem. 1982; 25: 337
    • 7b Fryer RI, Zhang P, Rios R, Gu Z.-Q, Basile AS, Skolnick P. J. Med. Chem. 1993; 36: 1669
    • 7c Savini L, Massarelli P, Nencini C, Pellerano C, Biggio G, Maciocco A, Tuligi G, Carrieri A, Cinone N, Carotti A. Bioorg. Med. Chem. 1998; 6: 389
    • 8a Hamama WS, El-Gohary H, Kuhnert GN, Zoorob HH. Curr. Org. Chem. 2012; 16: 373
    • 8b Zea A, Alba A.-NR, Mazzanti A, Moyano A, Rios R. Org. Biomol. Chem. 2011; 9: 6519
    • 8c Li Y, Zhang S, Yang J, Jiang S, Li Q. Dyes Pigm. 2008; 76: 508
    • 8d Prasad YR, Rao AL, Prasoona L, Murali K, Kumar PR. Bioorg. Med. Chem. Lett. 2005; 15: 5030
    • 9a Liao YH, Chen WB, Wu ZJ, Du XL, Cun LF, Zhang XM, Yuan WC. Adv. Synth. Catal. 2010; 352: 827
    • 9b Yang Z, Wang Z, Bai S, Liu X, Lin L, Feng X. Org. Lett. 2011; 13: 596
    • 9c Wang Z, Yang Z, Chen D, Liu X, Lin L, Feng X. Angew. Chem. Int. Ed. 2011; 21: 5030
    • 9d Li JH, Du DM. Org. Biomol. Chem. 2013; 11: 6215
    • 10a Mao S, Geng X, Yang Y, Qian X, Wu S, Han J, Wang L. RSC Adv. 2015; 5: 36390
    • 10b Huang T, Ji X, Wu W, Liang F, Cao S. RSC Adv. 2015; 5: 66598
  • 11 1-Methyl-2-phenyl-1H-indole (3a) – Typical ProcedureAdded 5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (1a, 34.8 mg, 0.2 mmol, 1.0 equiv), N,N-diethyl-2,3,4,5,6-pentafluorobenzamide (2a, 64.08 mg, 0.24 mmol, 1.2 equiv), and Cs2CO3 (130.0 mg, 0.4 mmol, 2.0 equiv) in 2.0 mL of CH3CN. The solution was warmed up to 80 ℃ and was stirred for 12 h until the reaction was complete as indicated by TLC. The reaction mixture was then quenched with H2O, extracted with CH2Cl2 (3 × 10 mL), and the combined organic layers were concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel to obtain the product. N,N-Diethyl-2,3,5,6-tetrafluoro-4-[(3-methyl-1-phenyl-1H-pyrazol-5-yl)oxy]benzamide (3a)The crude was purified by flash chromatography using petroleum ether/ethyl acetate (15:1) to afford 3a as colorless oil (69.0 mg, 81% yield). TLC: Rf = 0.16 (petroleum ether/ethyl acetate = 15:1; UV). 1H NMR (400 MHz, CDCl3): δ = 7.70 (d, J = 7.2 Hz, 2 H), 7.46 (t, J = 7.6 Hz, 2 H), 7.33 (t, J = 7.6 Hz, 1 H), 5.48 (s, 1 H), 3.60 (q, J = 7.2 Hz, 2 H), 3.24 (q, J = 7.2 Hz, 2 H), 2.27 (s, 3 H), 1.28 (t, J = 6.8 Hz, 3 H), 1.15 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 157.9, 151.1, 149.0, 142.9 (dm, J = 248.0 Hz), 141.0 (dm, J = 299.0 Hz), 137.9, 134.2 (t, J = 13.0 Hz), 129.2, 127.2, 122.9, 114.1 (t, J = 13.0 Hz), 89.5, 43.4, 40.0, 14.6, 14.2, 12.9. 19F NMR (376 MHz, CDCl3): δ = –142.00 to –142.14 (m, 2 F), –152.27 to –152.40 (m, 2 F). HRMS (ESI-TOF): m/z calcd for C21H20F4N3O2 [M + H]+: 422.1486; found: 422.1480.