Synlett, Inhaltsverzeichnis Synlett 2023; 34(19): 2346-2350DOI: 10.1055/a-2159-4847 letter Trimethylsilyl Azide Promoted Shono Oxidation of N,N-Dialkyl Amides Wenlin Luo a Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China , Ruixing Zhang a Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China , Qi Xu b Nursing School of Nanchang University, Nanchang, 330031, P. R. of China , Shengyu Zheng c Institute for Advanced Study, Nanchang University, Nanchang, 330031, P. R. of China , Junpeng Yang a Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China , Meixia Liu a Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China , Shengmei Guo ∗ a Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China , Hu Cai∗ a Department of Chemistry, Nanchang University, Nanchang, 330031, P. R. of China › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract An alkoxylation of N,N-dialkyl amides by the Shono reaction has been developed that offers a simple and efficient way to access N-adjacent-carbon-substituted amides. TMSN3 plays an essential role in this transformation and permits the reaction to proceed with a broad substrate scope under mild conditions. This reaction proceeds at a lower current compared with the classical method and it affords the products in up to 91% yield. A possible mechanism is proposed based on control experiments. Key words Key wordstrimethylsilyl azide - Shono oxidation - alkoxylation - amides - electrochemistry - radical relay reaction Volltext Referenzen References and Notes 1a Seavill PW, Wilden JD. Green Chem. 2020; 22: 7737 1b Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786 1c de Figueiredo RM, Suppo J.-S, Campagne J.-M. Chem. Rev. 2016; 116: 12029 2a Jain P, Verma P, Xia G, Yu J.-Q. Nat. Chem. 2017; 9: 140 2b Shu X, Zhong D, Huang Q, Huan L, Huo H. Nat. Commun. 2023; 14: 125 2c Wang X. Nat. Catal. 2019; 2: 98 3a Katritzky AR, Pernak J, Fan WQ, Saczewski F. J. Org. Chem. 1991; 56: 4439 3b Katritzky AR, Fan WQ, Black M, Pernak J. J. Org. Chem. 1992; 57: 547 3c Bosset C, Beucher H, Bretel G, Pasquier E, Queguiner L, Henry C, Vos A, Edwards JP, Meerpoel L, Berthelot D. Org. Lett. 2018; 20: 6003 3d Li L, Zhang G, Savateev A, Kurpil B, Antonietti M, Zhao Y. Asian J. Org. Chem. 2018; 7: 2464 3e Chang Z, Huang J, Wang S, Chen G, Zhao H, Wang R, Zhao D. Nat. Commun. 2021; 12: 4342 4a Huff CA, Cohen RD, Dykstra KD, Streckfuss E, DiRocco DA, Krska SW. J. Org. Chem. 2016; 81: 6980 4b Novaes LF. T, Ho JS. K, Mao K, Liu K, Tanwar M, Neurock M, Villemure E, Terrett JA, Lin S. J. Am. Chem. Soc. 2022; 144: 1187 5a Dai C, Meschini F, Narayanam JM. R, Stephenson CR. J. J. Org. Chem. 2012; 77: 4425 5b Singh MK, Akula HK, Satishkumar S, Stahl L, Lakshman MK. ACS Catal. 2016; 6: 1921 6a Shimizu D, Kurose A, Nishikata T. Org. Lett. 2022; 24: 7873 6b Modak A, Dutta U, Kancherla R, Maity S, Bhadra M, Mobin SM, Maiti D. Org. Lett. 2014; 16: 2602 7a Liu L.-w, Wang Z.-z, Zhang H.-h, Wang W.-s, Zhang J.-z, Tang Y. Chem. Commun. 2015; 51: 9531 7b Xia Q, Chen W. J. Org. Chem. 2012; 77: 9366 7c Lv N, Yu S, Hong CD, Han D.-M, Zhang Y. Org. Lett. 2020; 22: 9308 7d Song R.-J, Tu Y.-Q, Zhu D.-Y, Zhang F.-M, Wang S.-H. Chem. Commun. 2015; 51: 749 7e Zhou J, Ren Q, Xu N, Wang C, Song S, Chen Z, Li J. Green Chem. 2021; 23: 5753 7f Aruri H, Singh U, Kumar M, Sharma S, Aithagani SK, Gupta VK, Mignani S, Vishwakarma RA, Singh PP. J. Org. Chem. 2017; 82: 1000 7g Luo Y, Hu M, Ge J, Li B, He L. Org. Chem. Front. 2022; 9: 1593 8a Chao W, Weinreb SM. Tetrahedron Lett. 2000; 41: 9199 8b Huang F.-Q, Dong X, Qi L.-W, Zhang B. Tetrahedron Lett. 2016; 57: 1600 8c Huang F.-Q, Zhou G.-X, Dong X, Qi L.-W, Zhang B. Asian J. Org. Chem. 2016; 5: 192 9a Shono T, Hamaguchi H, Matsumura Y. J. Am. Chem. Soc. 1975; 97: 4264 9b Shono T, Matsumura Y, Tsubata K. J. Am. Chem. Soc. 1981; 103: 1172 9c Suga S, Okajima M, Yoshida J.-i. Tetrahedron Lett. 2001; 42: 2173 10a Gao P.-S, Weng X.-J, Wang Z.-H, Zheng C, Sun B, Chen Z.-H, You S.-L, Mei T.-S. Angew. Chem. Int. Ed. 2020; 59: 15254 10b Feng T, Wang S, Liu Y, Liu S, Qiu Y. Angew. Chem. Int. Ed. 2022; 61: e202115178 11 Frankowski KJ, Liu R, Milligan GL, Moeller KD, Aubé J. Angew. Chem. Int. Ed. 2015; 54: 10555 12 Kabeshov MA, Musio B, Murray PR. D, Browne DL, Ley SV. Org. Lett. 2014; 16: 4618 13a Jones AM, Banks CE. Beilstein J. Org. Chem. 2014; 10: 3056 13b Wang F, Rafiee M, Stahl SS. Angew. Chem. Int. Ed. 2018; 57: 6686 13c Green RA, Brown RC. D, Pletcher D. Org. Process Res. Dev. 2015; 19: 1424 13d Golub T, Becker JY. Electrochim. Acta 2016; 205: 207 13e Golub T, Becker JY. Electrochim. Acta 2015; 173: 408 13f Golub T, Becker JY. J. Electrochem. Soc. 2013; 160: G3123 13g Lee D.-S. Tetrahedron: Asymmetry 2009; 20: 2014 14a Kawamata Y, Hayashi K, Carlson E, Shaji S, Waldmann D, Simmons BJ, Edwards JT, Zapf CW, Saito M, Baran PS. J. Am. Chem. Soc. 2021; 143: 16580 14b Alfonso-Súarez P, Kolliopoulos AV, Smith JP, Banks CE, Jones AM. Tetrahedron Lett. 2015; 56: 6863 15a Nakai S, Yatabe T, Suzuki K, Sasano Y, Iwabuchi Y, Hasegawa J.-y, Mizuno N, Yamaguchi K. Angew. Chem. Int. Ed. 2019; 58: 16651 15b Ding S, Jiao N. Angew. Chem. 2012; 124: 9360 15c Ganiek MA, Becker MR, Berionni G, Zipse H, Knochel P. Chem. Eur. J. 2017; 23: 10280 15d Lagishetti C, Banne S, You H, Tang M, Guo J, Qi N, He Y. Org. Lett. 2019; 21: 5301 15e Shen Y, Rovis T. J. Am. Chem. Soc. 2021; 143: 16364 15f Ide T, Barham JP, Fujita M, Kawato Y, Egami H, Hamashima Y. Chem. Sci. 2018; 9: 8453 15g Mandigma MJ. P, Zurauskas J, MacGregor CI, Edwards LJ, Shahin A, d’Heureuse L, Yip P, Birch DJ. S, Gruber T, Heilmann J, John MP, Barham JP. Chem. Sci. 2022; 13: 1912 15h Xie J, Shi S, Zhang T, Mehrkens N, Rudolph M, Hashmi AS. K. Angew. Chem. Int. Ed. 2015; 54: 6046 15i Beatty JW, Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474 15j You H, Vegi SR, Lagishetti C, Chen S, Reddy RS, Yang X, Guo J, Wang C, He Y. J. Org. Chem. 2018; 83: 4119 16 Wang Y, Wang N, Zhao J, Sun M, You H, Fang F, Liu Z.-Q. ACS Catal. 2020; 10: 6603 17 General Procedure for Synthesis of 3<. 3a as an example. 1a (0.4 mmol), nBu4NBF4 (0.4 mmol), and CH3CN: MeOH (5.0 mL/5.0 mL) were added into an oven-dried three-necked flask (25 mL) with a stir bar. The flask was equipped with platinum electrodes (10 × 10 × 0.3 mm3) as the cathode and anode. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA and air atmosphere under room temperature for 6 h. The mixture was washed with NaCl solution and then was extracted by EA. The combined organic phase was dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with petroleum ether/ethyl acetate as the eluent (Petroleum ether (PE)/EA = 2:1 to afford the corresponding product 3a as a colorless liquid, 91% yield. 1H NMR (400 MHz, CDCl3) δ 7.43–7.34 (m, 5 H), 4.91–4.52 (m, 2 H), 3.35–2.93 (m, 6 H); 13C NMR (101 MHz, CDCl3) δ 171.35, 131.51, 129.00, 124.39, 82.42, 55.22, 33.10. HRMS (ESI): m/z calcd for C10H13O2NNa [M+Na]+: 202.0844, found: 202.0839. Zusatzmaterial Zusatzmaterial Supporting Information