Synlett 2024; 35(07): 801-806
DOI: 10.1055/a-2159-9400
letter

A Golden Synthetic Approach to 2-(1H-Pyrrol-1-yl)anilines and Pyrrolo[1,2-a]quinoxalines through a Gold Carbene Intermediate

Volkan Tasdemir
a   Muradiye Vacational School, Van Yüzüncü Yil University, Van, Türkiye
,
Hasan Genç
b   Faculty of Educational Sciences, Van Yüzüncü Yil University, Van, Türkiye
,
c   Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Türkiye
d   Engineering Faculty, Biomedical Engineering, Necmettin Erbakan University, 42100, Konya, Türkiye
› Author Affiliations
N.M. thanks the Türkiye Academy of Sciences Outstanding Young Scientist Award program (TÜBA-GEBİP) and The Scientific and Technological Research Council of Türkiye (TÜBİTAK-121Z727) for grants.


Abstract

The pyrrolo[1,2-a]quinoxaline skeleton has significant potential for many biological and optical applications. Hence, in this study, unconjugated ynone derivatives were treated with 1,2-diaminoarenes in a gold-catalyzed cyclization to give 2-(1H-pyrrol-1-yl)anilines, which are valuable starting materials, and pyrrolo[1,2-a]quinoxalines by a one-pot and single-step approach. A reaction mechanism for the formation of the pyrrolo[1,2-a]quinoxaline skeleton featuring a key gold carbene intermediate is proposed. On the other hand, the methyl group on the C-2 position of the 2-(1H-pyrrol-1-yl)anilines was oxidized by SeO2 to give the pyrrolo[1,2-a]quinoxaline skeleton, resulting in 14 different pyrrolo[1,2-a]quinoxaline derivatives.

Supporting Information



Publication History

Received: 25 August 2022

Accepted after revision: 24 August 2023

Accepted Manuscript online:
24 August 2023

Article published online:
31 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Cheeseman GW. H, Tuck B. Chem. Ind. (London U. K.) 1965; 1382
    • 2a Campiani G, Morelli E, Gemma S, Nacci V, Butini S, Hamon M, Novellino E, Greco G, Cagnotto A, Goegan M, Cervo L, Valle FD, Fracasso C, Caccia S, Mennini T. J. Med. Chem. 1999; 42: 4362
    • 2b Guillon J, Reynolds RC, Leger J.-M, Guie M.-A, Massip S, Dallemagne P, Jarry C. J. Enzyme Inhib. Med. Chem. 2004; 19: 489
    • 2c Desplat V, Moreau S, Gay A, Fabre SB, Thiolat D, Massip S, Macky G, Godde F, Mossalayi D, Jarry C, Guillon J. J. Enzyme Inhib. Med. Chem. 2010; 25: 204
    • 2d Makane VB, Krishna EV, Karale UB, Babar DA, Kalari S, Rekha EM, Shukla M, Kaul G, Sriram D, Chopra S, Misra S, Rode HB. Arch. Pharm. (Weinheim, Ger.) 2020; 353: e2000192
    • 2e Gıillon J, Moreau S, Mouray E, Sinou V, Forfar I, Fabre S, Desplat V, Millet P, Parzy D, Jarry C, Grellier P. Bioorg. Med. Chem. 2008; 16: 9133
    • 2f García-Marin J, Griera M, Sánchez-Alonso P, Di Geronimo B, Mendicuti F, Rodríguez-Puyol M, Alajarin R, de Pascal-Teresa B, Vaquero JJ, Rodríguez-Puyol D. ChemMedChem 2020; 15: 1788
    • 2g Biswas C, Krishnakanth KN, Lade JJ, Chaskar AC, Tripathi A, Chetti P, Soma VR, Raavi SS. K. Chem. Phys. Lett. 2019; 730: 638
    • 3a Abonia R, Insuasty B, Quiroga J, Kolshorn H, Meier H. J Heterocycl. Chem. 2001; 38: 671
    • 3b Fan Y.-S, Jiang Y.-J, An D, Sha D, Antilla JC, Zhang S. Org. Lett. 2014; 16: 6112
    • 3c Preetam A, Nath M. RSC Adv. 2015; 5: 21843
    • 3d Yonekura K, Oki K, Tsuchimoto T. Adv. Synth. Catal. 2016; 358: 2895
    • 3e Xie C, Feng L, Li W, Ma X, Ma X, Liu Y, Ma C. Org. Biomol. Chem. 2016; 14: 8529
    • 3f Wang C, Li Y, Zhao J, Cheng B, Zhai H. Tetrahedron Lett. 2016; 57: 3908
  • 4 Xie C, Zhang Z, Li D, Gong J, Han X, Liu X, Ma C. J. Org. Chem. 2017; 82: 3491
  • 5 An Z, Zhao L, Wu M, Ni J, Qi Z, Yu G, Yan R. Chem. Commun. 2017; 53: 11572
  • 6 Dhole S, Chiu W.-J, Sun C.-M. Adv. Synth. Catal. 2019; 361: 2916
  • 7 Reddy LM, Reddy VV, Putta CS, Satteyyanaidu V, Reddy CK, Reddy BV. S. ChemistrySelect 2018; 3: 9881
    • 8a To TA, Nguyen CT, Tran HP, Huynh TQ, Nguyen TT, Le NT. H, Nguyen D, Tran PD, Phan NT. S. J. Catal. 2019; 377: 163
    • 8b Viji M, Vishwanath M, Sim J, Park Y, Jung C, Lee S, Lee H, Lee K, Jung J.-K. RSC Adv. 2020; 10: 37202
  • 9 Togiti UK, Shukla AK, Bhattacharya A. Tetrahedron Lett. 2021; 70: 153008
  • 10 Chun S, Ahn J, Putta RR, Lee SB, Oh D.-C, Hong S. J. Org. Chem. 2020; 85: 15314
  • 11 Liu H, Duan T, Zhang Z, Xie C, Ma C. Org. Lett. 2015; 17: 2932
    • 12a Reeves JT, Fandrick DR, Tan Z, Song JJ, Lee H, Yee NK, Senanayake CH. J. Org. Chem. 2010; 75: 992
    • 12b Li Z, Yan N, Xie J, Liu P, Zhang J, Dai B. Chin. J. Chem. 2015; 33: 589
  • 13 Zelina EY, Nevolina TA, Sorotskaja LN, Skvortsov DA, Trushkov IV, Uchuskin MG. Tetrahedron Lett. 2020; 61: 151532
    • 14a Brase S, Wertal H, Frank D, Vidović D, de Meijere A. Eur. J. Org. Chem. 2005; 4167
    • 14b Taşdemir V, Menges N. Asian J. Org. Chem. 2020; 9: 2108
    • 14c Tan M, Bildirici İ, Menges N. J Serb. Chem. Soc. 2018; 83: 953
    • 14d Şener A, Menges N, Akkurt M, Karaca S, Büyükgüngör O. Tetrahedron Lett. 2008; 49: 2828
    • 15a Taşdemir V, Kuzu B, Tan M, Genç H, Menges N. Synlett 2019; 30: 307
    • 15b Yang L, Su H, Sun Y, Zhang S, Cheng M, Liu Y. Molecules 2022; 27: 8956
    • 15c Tzouras NV, Gobbo A, Pozsoni NB, Chalkidis SG, Bhandary S, Van Hecke K, Vougioukalakis GC, Nolan SP. Chem. Commun. 2022; 58: 8516
    • 15d Kuzu B, Genç H, Taşpinar M, Tan M, Menges N. Heteroat. Chem. 2018; 29: e21412
  • 16 2-(1H-Pyrrol-1-yl)anilines 4; General Procedure The ynone 1 (1 mmol) and 1,2-diaminoarene 2 (2 mmol) were dissolved in EtOH (5 mL) in a reaction flask. A catalytic amount of the appropriate metal catalyst (10 mol%) was added, and the mixture was refluxed for 18 hours until the reaction was complete (TLC). The solvent was evaporated, and the crude product was purified by column chromatography [silica gel, EtOAc–hexane (1:5)]. Ethyl 1-(2-Aminophenyl)-2,5-dimethyl-1H-pyrrole-3-carboxylate (4a) Colorless viscous liquid; yield: 44% (AuCl3), 81% [IPr(Au)Cl]. 1H NMR (CDCl3, 400 MHz): δ = 7.26–7.22 (m, 1 H, Ar-H), 7.00–6.98 (m, 1 H, Ar-H), 6.84–6.79 (m, 2 H, Ar-H), 6.39 (d, J = 0.9 Hz, 1 H, H-3), 3.81 (s, 3 H, –OCH3), 3.31 (s, 2 H, –NH2), 2.25 (s, 3 H, –CH3), 1.94 (s, 3 H, –CH3). 13C NMR (100 MHz, CDCl3): δ = 166.1, 143.6, 136.3, 130.0, 128.6, 122.9, 118.5, 115.9, 111.5, 107.8, 107.7, 50.8, 12.0, 11.7. HRMS (ESI): m/z [M + H]+ calcd for C14H16N2O2: 245.12845; found: 245.12883.
    • 17a Kuzu B, Ekmekci Z, Tan M, Menges N. J. Fluoresc. 2021; 31: 861
    • 17b Kuzu B, Tan M, Ekmekci Z, Menges N. J. Photochem. Photobiol., A 2019; 381: 111874
    • 17c Thurow S, Abenante L, Anghinoni JM, Lenardão EJ. Curr. Org. Synth. 2021; 19: 331
    • 17d Wang P, Lindsey JS. Molecules 2020; 25: 1858
    • 18a Bucci A, Rodriguez GM, Bellachioma G, Zuccaccia C, Poater A, Cavallo L, Macchioni A. ACS Catal. 2016; 6: 4559
    • 18b Nagaraaj P, Vijayakumar V. Org. Chem. Front. 2019; 6: 2570
  • 19 Pyrrolo[1,2-a]quinoxalines 3; General Procedure with SeO2 A solution of the appropriate compound 4 (1 mmol) in 1,4-dioxane (5 mL) was refluxed with SeO2 (3 mmol) in a reaction flask for 24 hours until the reaction was complete (TLC). The solvent was removed by filtration, and the crude product was purified by column chromatography [silica gel, EtOAc–hexane (1:5)]. Methyl 1-Methylpyrrolo[1,2-a]quinoxaline-2-carboxylate (3a) Whie solid; yield: 0.093 g (95%); mp 158–159 °C. 1H NMR (400 MHz, CDCl3): δ = 8.69 (s, 1 H, –CH), 8.35–3-8.31 (m, 1 H, Ar-H), 7.97–7.93 (m, 1 H, Ar-H), 7.51–7.46 (m, 2 H, Ar-H), 7.26 (d, J = 1.9 Hz, 1 H, pyrrole), 3.90 (s, 3 H, –OCH3), 3.27 (s, 3 H, –CH3). 13C NMR (100 MHz, CDCl3): δ = 165.4, 146.7, 137.7, 133.7, 130.3, 129.9, 127.3, 125.9, 125.7, 117.3, 116.4, 109.0, 51.5, 15.6. HRMS (ESI): m/z [M + H]+ calcd for C14H13N2O2: 241.09715; found: 241.09769.
  • 20 Wang Y, Muratore ME, Echavarren AM. Chem. Eur. J. 2015; 21: 7332
    • 21a Jin H, Tong W.-Y, Zhang J, Rudolph M, Rominger F, Shen X, Qu S, Hashmi AS. K. Nat. Commun. 2022; 13: 1672
    • 21b Allegue D, Santamaria J, Ballesteros A. Adv. Synth. Catal. 2021; 363: 5272
    • 21c Wang Q, Rudolph M, Rominger F, Hashmi AS. K. Adv. Synth. Catal. 2019; 362: 755