Klinische Neurophysiologie 2024; 55(02): 74-81
DOI: 10.1055/a-2160-7814
Übersicht

Neurostimulation chronischer Schmerzsyndrome

Neurostimulation in Chronic Pain Syndromes
Jan Vesper
1   Klinik für Neurochirurgie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
2   Sektion Funktionelle Neurochirurgie und Stereotaxie, Zentrum für Neuromodulation, Heinrich-Heine-Universität, Düsseldorf, Germany
,
Zarela Krause Molle
1   Klinik für Neurochirurgie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
,
Philipp Joerg Slotty
1   Klinik für Neurochirurgie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
› Author Affiliations

Zusammenfassung

Circa 20 Prozent aller Patienten in Deutschland, die eine schmerztherapeutische Spezialeinrichtung aufsuchen, leiden unter ungenügend therapierten neuropathischen Schmemrzen. Mittlerweile liegen aussagekräftigen Studien vor, die für die angewendeten Neuromodulationsverfahren einen hohen Evidenzgrad erreichen. Die Epidurale Rückenmarkstimulation (Spinal Cord Stimulation, SCS) ist ein solches neuromodulatorisches, reversibles interventionelles Verfahren für Patienten mit chronischen, mit konservativen und weniger invasiven Mitteln nicht ausreichend therapierbaren Schmerzen. Die Selektion eines Patienten für eine SCS Therapie ist hauptsächlich durch die entsprechende Diagnose begründet. Die SCS kann bei verschiedenen Formen neuropathischer, sympathisch vermittelter oder ischämischer Schmerzen hilfreich sein. Die pathophysiologischen Grundlagen, inklusive der spinalen und supraspinalen Mechanismen der Neurostimulation werden dargestellt. Die verschiedenen Prinzipien der Stimulation, herkömmliche tonische, wie auch neue Stimulationsparameter der Burst und HF Stimulation als auch die Stimulation des Spinalganglions werden erwähnt. Indikationsstellung und auch Patientenselektion sowie neue Aspekte der Stimulationstechniken des peripheren Nervensystems werden in den Kontext der veränderten technischen Möglichkeiten gestellt.

Abstract

In Germany approximately 20 percent of all patients who visit a specialist pain therapy facility suffer from inadequately treated neuropathic diseases. In the meantime, studies have become available with adequate evidence in support of neuromodulation methods. Epidural spinal cord stimulation (SCS) is such a neuromodulatory, reversible interventional procedure for patients with chronic pain that cannot be adequately treated with conservative and less invasive means. The selection of a patient for SCS therapy is based on the appropriate diagnosis. SCS can be helpful in various forms of neuropathic, sympathetically mediated, or ischemic pain. The pathophysiological principles, including the spinal and supraspinal mechanisms of neurostimulation, are presented. The different principles of stimulation, conventional tonic, as well as new stimulation parameters of burst and HF stimulation as well as the stimulation of the spinal ganglion are described. Indication, patient selection as well as new aspects of the stimulation techniques of the peripheral nervous system are placed in the context of the changed technical possibilities.py is mainly based on the corresponding diagnosis. SCS can be helpful in various forms of neuropathic, sympathetically mediated, or ischemic pain. The pathophysiological principles, including the spinal and supraspinal mechanisms of neurostimulation, are presented. The different principles of stimulation, conventional tonic, as well as new stimulation parameters of burst and HF stimulation as well as the stimulation of the spinal ganglion are mentioned. Indication and also patient selection as well as new aspects of the stimulation techniques of the peripheral nervous system are placed in the context of the changed technical possibilities.



Publication History

Article published online:
22 May 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Smith BH, Macfarlane GJ, Torrance N. Epidemiology of chronic pain, from the laboratory to the bus stop: time to add understanding of biological mechanisms to the study of risk factors in population-based research?. Pain 2007; 127: 5-10
  • 2 Attal N, Cruccu G, Haanpaa M. et al. EFNS guidelines on pharmacological treatment of neuropathic pain. European journal of neurology 2006; 13: 1153-1169
  • 3 Richardson J, Sabanathan S, Mearns AJ. et al. Efficacy of pre-emptive analgesia and continuous extrapleural intercostal nerve block on post-thoracotomy pain and pulmonary mechanics. The Journal of cardiovascular surgery 1994; 35: 219-228
  • 4 Vilholm OJ, Cold S, Rasmussen L. et al. The postmastectomy pain syndrome: an epidemiological study on the prevalence of chronic pain after surgery for breast cancer. British journal of cancer 2008; 99: 604-610
  • 5 Cunningham J, Temple WJ, Mitchell P. et al. Cooperative hernia study. Pain in the postrepair patient. Annals of surgery 1996; 224: 598-602
  • 6 Sherman RA, Sherman CJ, Parker L. Chronic phantom and stump pain among American veterans: results of a survey. Pain 1984; 18: 83-95
  • 7 Field J, Atkins RM. Algodystrophy is an early complication of Colles’ fracture. What are the implications?. J Hand Surg Br 1997; 22: 178-182
  • 8 Kumar K, Taylor RS, Jacques L. et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 2007; 132: 179-188
  • 9 Andersen G, Vestergaard K, Ingeman-Nielsen M. et al. Incidence of central post-stroke pain. Pain 1995; 61: 187-193
  • 10 Osterberg A, Boivie J, Thuomas KA. Central pain in multiple sclerosis--prevalence and clinical characteristics. Eur J Pain 2005; 9: 531-542
  • 11 Linderoth B, Meyerson BA. Spinal cord stimulation: exploration of the physiological basis of a widely used therapy. Anesthesiology 2010; 113: 1265-1267
  • 12 Krames ES, Monis S, Poree L. et al Using the SAFE principles when evaluating electrical stimulation therapies for the pain of failed back surgery syndrome. Neuromodulation 2011; 14: 299-311 discussion 311. 10.1111/j.1525-1403.2011.00373.x
  • 13 Rasche D, Siebert S, Stippich C. et al [Spinal cord stimulation in Failed-Back-Surgery-Syndrome. Preliminary study for the evaluation of therapy by functional magnetic resonance imaging (fMRI)]. Schmerz 2005; 19: 497-500 502-495
  • 14 Barolat G, Massaro F, He J. et al. Mapping of sensory responses to epidural stimulation of the intraspinal neural structures in man. J Neurosurg 1993; 78: 233-239
  • 15 De Ridder D, Vanneste S. Burst and Tonic Spinal Cord Stimulation: Different and Common Brain Mechanisms. Neuromodulation : journal of the International Neuromodulation Society 2016; 19: 47-59
  • 16 Russo M, Cousins MJ, Brooker C. et al. Effective Relief of Pain and Associated Symptoms With Closed-Loop Spinal Cord Stimulation System: Preliminary Results of the Avalon Study. Neuromodulation : journal of the International Neuromodulation Society 2018; 21: 38-47
  • 17 Linderoth B, Stiller CO, Gunasekera L. et al Gamma-aminobutyric acid is released in the dorsal horn by electrical spinal cord stimulation: an in vivo microdialysis study in the rat. Neurosurgery 1994; 34: 484-488 discussion 488-489
  • 18 Saade NE, Barchini J, Tchachaghian S. et al. The role of the dorsolateral funiculi in the pain relieving effect of spinal cord stimulation: a study in a rat model of neuropathic pain. Exp Brain Res 2015; 233: 1041-1052
  • 19 Lind G, Meyerson BA, Winter J. et al. Intrathecal baclofen as adjuvant therapy to enhance the effect of spinal cord stimulation in neuropathic pain: a pilot study. Eur J Pain 2004; 8: 377-383
  • 20 Song Z, Ansah OB, Meyerson BA. et al. The rostroventromedial medulla is engaged in the effects of spinal cord stimulation in a rodent model of neuropathic pain. Neuroscience 2013; 247: 134-144
  • 21 Song Z, Ultenius C, Meyerson BA. et al. Pain relief by spinal cord stimulation involves serotonergic mechanisms: an experimental study in a rat model of mononeuropathy. Pain 2009; 147: 241-248
  • 22 Tazawa T, Kamiya Y, Kobayashi A. et al. Spinal cord stimulation modulates supraspinal centers of the descending antinociceptive system in rats with unilateral spinal nerve injury. Mol Pain 2015; 11: 36
  • 23 Prabhala T, Sabourin S, DiMarzio M. et al. Duloxetine Improves Spinal Cord Stimulation Outcomes for Chronic Pain. Neuromodulation : journal of the International Neuromodulation Society 2019; 22: 215-218
  • 24 Taylor RS, Desai MJ, Rigoard P. et al. Predictors of pain relief following spinal cord stimulation in chronic back and leg pain and failed back surgery syndrome: a systematic review and meta-regression analysis. Pain practice : the official journal of World Institute of Pain 2014; 14: 489-505
  • 25 Sapunar D, Kostic S, Banozic A. et al. Dorsal root ganglion – a potential new therapeutic target for neuropathic pain. J Pain Res 2012; 5: 31-38
  • 26 Deer TR, Levy RM, Kramer J. et al. Dorsal root ganglion stimulation yielded higher treatment success rate for complex regional pain syndrome and causalgia at 3 and 12 months: a randomized comparative trial. Pain 2017; 158: 669-681
  • 27 Koetsier E, Franken G, Debets J. et al. Mechanism of dorsal root ganglion stimulation for pain relief in painful diabetic polyneuropathy is not dependent on GABA release in the dorsal horn of the spinal cord. CNS Neurosci Ther 2020; 26: 136-143
  • 28 Atkinson TM, Rosenfeld BD, Sit L. et al. Using confirmatory factor analysis to evaluate construct validity of the Brief Pain Inventory (BPI). Journal of pain and symptom management 2011; 41: 558-565
  • 29 Hollingworth W, Turner JA, Welton NJ. et al. Costs and cost-effectiveness of spinal cord stimulation (SCS) for failed back surgery syndrome: an observational study in a workers’ compensation population. Spine 2011; 36: 2076-2083
  • 30 Miller JP, Eldabe S, Buchser E. et al. Parameters of Spinal Cord Stimulation and Their Role in Electrical Charge Delivery: A Review. Neuromodulation : journal of the International Neuromodulation Society 2016; 19: 373-384
  • 31 Ahmed S, Yearwood T, De Ridder D. et al. Burst and high frequency stimulation: underlying mechanism of action. Expert Rev Med Devices 2018; 15: 61-70
  • 32 De Ridder D, Vanneste S, Plazier M. et al. Burst spinal cord stimulation: toward paresthesia-free pain suppression. Neurosurgery 2010; 66: 986-990
  • 33 Meuwissen KPV, de Vries LE, Gu JW. et al. Burst and Tonic Spinal Cord Stimulation Both Activate Spinal GABAergic Mechanisms to Attenuate Pain in a Rat Model of Chronic Neuropathic Pain. Pain Pract 2020; 20: 75-87
  • 34 Meuwissen KPV, Gu JW, Zhang TC. et al. Burst Spinal Cord Stimulation in Peripherally Injured Chronic Neuropathic Rats: A Delayed Effect. Pain Pract 2018; 18: 988-996
  • 35 Yearwood T, De Ridder D, Yoo HB. et al. Comparison of Neural Activity in Chronic Pain Patients During Tonic and Burst Spinal Cord Stimulation Using Fluorodeoxyglucose Positron Emission Tomography. Neuromodulation 2020; 23: 56-63
  • 36 Meuwissen KPV, van der Toorn A, Gu JW. et al. Active Recharge Burst and Tonic Spinal Cord Stimulation Engage Different Supraspinal Mechanisms: A Functional Magnetic Resonance Imaging Study in Peripherally Injured Chronic Neuropathic Rats. Pain Pract 2020; 20: 510-521
  • 37 Stanton-Hicks M. Complex regional pain syndrome: manifestations and the role of neurostimulation in its management. Journal of pain and symptom management 2006; 31: S20-S24
  • 38 Kumar K, Toth C, Nath RK. et al Epidural spinal cord stimulation for treatment of chronic pain--some predictors of success. A 15-year experience. Surgical neurology 1998; 50: 110-120 discussion 120-111
  • 39 Harke H, Gretenkort P, Ladleif HU. et al. The response of neuropathic pain and pain in complex regional pain syndrome I to carbamazepine and sustained-release morphine in patients pretreated with spinal cord stimulation: a double-blinded randomized study. Anesth Analg 2001; 92: 488-495
  • 40 Kapural L, Yu C, Doust MW. et al. Novel 10-kHz High-frequency Therapy (HF10 Therapy) Is Superior to Traditional Low-frequency Spinal Cord Stimulation for the Treatment of Chronic Back and Leg Pain: The SENZA-RCT Randomized Controlled Trial. Anesthesiology 2015; 123: 851-860
  • 41 Dario A, Fortini G, Bertollo D. et al. Treatment of failed back surgery syndrome. Neuromodulation 2001; 4: 105-110
  • 42 Turner JA, Loeser JD, Bell KG. Spinal cord stimulation for chronic low back pain: a systematic literature synthesis. Neurosurgery 1995; 37: 1088-1095 discussion 1095-1086
  • 43 Taylor RS, Van Buyten JP, Buchser E. Spinal cord stimulation for chronic back and leg pain and failed back surgery syndrome: a systematic review and analysis of prognostic factors. Spine 2005; 30: 152-160
  • 44 Nachbur B, Gersbach P, Hasdemir M. Spinal cord stimulation for unreconstructible chronic limb ischaemia. European journal of vascular surgery 1994; 8: 383-388
  • 45 Cook AW, Oygar A, Baggenstos P. et al. Vascular disease of extremities. Electric stimulation of spinal cord and posterior roots. New York state journal of medicine 1976; 76: 366-368
  • 46 Ubbink DT, Vermeulen H. Spinal cord stimulation for non-reconstructable chronic critical leg ischaemia. The Cochrane database of systematic reviews 2003; CD004001 10.1002/14651858.CD004001
  • 47 Ubbink DT, Vermeulen H, Spincemaille GH. et al. Systematic review and meta-analysis of controlled trials assessing spinal cord stimulation for inoperable critical leg ischaemia. The British journal of surgery 2004; 91: 948-955
  • 48 Gowda RM, Khan IA, Punukollu G. et al. Treatment of refractory angina pectoris. International journal of cardiology 2005; 101: 1-7
  • 49 Hautvast RW, DeJongste MJ, Staal MJ. et al. Spinal cord stimulation in chronic intractable angina pectoris: a randomized, controlled efficacy study. American heart journal 1998; 136: 1114-1120
  • 50 Murphy DF, Giles KE. Intractable angina pectoris: management with dorsal column stimulation. The Medical journal of Australia 1987; 146: 260
  • 51 Ekre O, Norrsell H, Wahrborg P. et al. Temporary cessation of spinal cord stimulation in angina pectoris-effects on symptoms and evaluation of long-term effect determinants. Coronary artery disease 2003; 14: 323-327
  • 52 Jessurun GA, Tio RA, De Jongste MJ. et al. Coronary blood flow dynamics during transcutaneous electrical nerve stimulation for stable angina pectoris associated with severe narrowing of one major coronary artery. The American journal of cardiology 1998; 82: 921-926
  • 53 Wu M, Linderoth B, Foreman RD. Putative mechanisms behind effects of spinal cord stimulation on vascular diseases: a review of experimental studies. Autonomic neuroscience : basic & clinical 2008; 138: 9-23
  • 54 Jitta DJ, DeJongste MJ, Kliphuis CM. et al Multimorbidity, the predominant predictor of quality-of-life, following successful spinal cord stimulation for angina pectoris. Neuromodulation 2011; 14: 13-18 discussion 18-19
  • 55 Brown JA. Motor cortex stimulation. Neurosurgical focus 2001; 11: E5
  • 56 Thomas L, Bledsoe JM, Stead M. et al. Motor cortex and deep brain stimulation for the treatment of intractable neuropathic face pain. Current neurology and neuroscience reports 2009; 9: 120-126
  • 57 Alappat JJ. Motor cortex stimulation for chronic pain: systematic review and meta-analysis of the literature. Neurology 2009; 72: 577 author reply 577
  • 58 Slavin KV. Peripheral nerve stimulation for neuropathic pain. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics 2008; 5: 100-106