RSS-Feed abonnieren
DOI: 10.1055/a-2168-2637
Prä- und posttherapeutische Dosimetrie der Radioembolisation
Pre- und post-therapeutic dosimetry in radioembolization
Zusammenfassung
Die transarterielle Radioembolisation (TARE) mit radioaktiv markierten Mikrosphären dient der gezielten Therapie primärer und sekundärer Lebertumore. Bei 90Y-markierten Glas- und Harzmikrosphären basiert die Behandlungsplanung auf 99mTc-MAA, während für 166Ho-PLAA-Mikrosphären eine Scout-Dosis an 166Ho-PLAA-Mikrosphären mit geringerer Aktivität zur Verfügung steht. Zur Steigerung der Effektivität der Therapie im Sinne der personalisierten Medizin wird bei der TARE zunehmend die personalisierte Dosimetrie etabliert. Dies beinhaltet die Berücksichtigung der Dosisverteilungen innerhalb von Tumoren als auch im normalen Lebergewebe. Zur Berechnung der In-vivo-Verteilung der absorbierten Dosis werden nach der Therapie Bildgebungsverfahren wie SPECT, PET und für 166Ho zusätzlich die MRT eingesetzt, um den Behandlungserfolg zu beurteilen. Dieses Manuskript bietet einen umfassenden Überblick über aktuelle Dosimetriemodelle für die prä- und posttherapeutische Beurteilung im Rahmen der TARE.
Abstract
Transarterial radioembolization (TARE) using radiolabeled microspheres serves as a liver-targeted therapeutic approach for primary and secondary liver cancer. At present, treatment planning for 90Y-labeled glass and resin microspheres relies on 99mTc MAA whereas 166Ho-PLAA TARE uses a scout dose of 166Ho-PLAA microspheres with lower activity. To enhance precision and tailor treatment to individual patients, TARE is progressing towards a more patient-specific dosimetry approach. This involves consideration and reporting of dose distributions both within tumors and normal liver tissue. Post-therapy imaging techniques such as SPECT, PET, and in addition for 166Ho MRI, are used to calculate the in vivo absorbed dose for post-therapy treatment verification. This manuscript offers a comprehensive overview of current dosimetry models for pre- and post-therapeutic TARE workup.
Publikationsverlauf
Artikel online veröffentlicht:
07. Dezember 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Michaleas SN, Laios K, Tsoucalas G. et al. Theophrastus Bombastus Von Hohenheim (Paracelsus) (1493–1541): The eminent physician and pioneer of toxicology. Toxicol Rep 2021; 8: 411-414
- 2 Hendee WR, Edwards FM. ALARA and an integrated approach to radiation protection. Semin Nucl Med 1986; 16: 142-150
- 3 Union CotE. Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Off J Eur Commun 2014; 13: 1-73
- 4 Mertens A, Essing T, Minko P. et al. Selective internal radiotherapy in Germany: a review of indications and hospital mortality from 2012 to 2019. J Clin Transl Res 2023; 9: 123-132
- 5 Vilgrain V, Pereira H, Assenat E. et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol 2017; 18: 1624-1636
- 6 Chow PKH, Gandhi M, Tan SB. et al. SIRveNIB: Selective Internal Radiation Therapy Versus Sorafenib in Asia-Pacific Patients With Hepatocellular Carcinoma. J Clin Oncol 2018; 36: 1913-1921
- 7 Ricke J, Klumpen HJ, Amthauer H. et al. Impact of combined selective internal radiation therapy and sorafenib on survival in advanced hepatocellular carcinoma. J Hepatol 2019; 71: 1164-1174
- 8 Hazel GA van, Heinemann V, Sharma NK. et al. SIRFLOX: Randomized Phase III Trial Comparing First-Line mFOLFOX6 (Plus or Minus Bevacizumab) Versus mFOLFOX6 (Plus or Minus Bevacizumab) Plus Selective Internal Radiation Therapy in Patients With Metastatic Colorectal Cancer. J Clin Oncol 2016; 34: 1723-1731
- 9 Wasan HS, Gibbs P, Sharma NK. et al. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol 2017; 18: 1159-1171
- 10 Reinders M, Braat A, Lam M. Toxicity and dosimetry in SORAMIC study. J Hepatol 2020; 73: 734-735
- 11 Weber M, Lam M, Chiesa C. et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging 2022; 49: 1682-1699
- 12 Bucalau AM, Collette B, Tancredi I. et al. Clinical impact of (99m)Tc-MAA SPECT/CT-based personalized predictive dosimetry in selective internal radiotherapy: a real-life single-center experience in unresectable HCC patients. Eur J Hybrid Imaging 2023; 7: 12
- 13 Hermann AL, Dieudonne A, Ronot M. et al. Relationship of Tumor Radiation-absorbed Dose to Survival and Response in Hepatocellular Carcinoma Treated with Transarterial Radioembolization with (90)Y in the SARAH Study. Radiology 2020; 296: 673-684
- 14 Garin E, Tselikas L, Guiu B. et al. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol 2021; 6: 17-29
- 15 Seltzer S, Bartlett D, Burns D. et al. ICRU report 85 fundamental quantities and units for ionizing radiation. J ICRU 2011; 11: 1-1
- 16 Pasciak AS, Abiola G, Liddell RP. et al. The number of microspheres in Y90 radioembolization directly affects normal tissue radiation exposure. Eur J Nucl Med Mol Imaging 2020; 47: 816-827
- 17 Garin E, Guiu B, Edeline J. et al. Trans-arterial Radioembolization Dosimetry in 2022. Cardiovasc Intervent Radiol 2022; 45: 1608-1621
- 18 Villalobos A, Arndt L, Cheng B. et al. Yttrium-90 Radiation Segmentectomy of Hepatocellular Carcinoma: A Comparative Study of the Effectiveness, Safety, and Dosimetry of Glass-Based versus Resin-Based Microspheres. J Vasc Interv Radiol 2023; 34: 1226-1234
- 19 Walrand S, Hesse M, Chiesa C. et al. The low hepatic toxicity per Gray of 90Y glass microspheres is linked to their transport in the arterial tree favoring a nonuniform trapping as observed in posttherapy PET imaging. J Nucl Med 2014; 55: 135-140
- 20 Dewaraja YK, Frey EC, Sgouros G. et al. MIRD pamphlet no. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. Journal of Nuclear Medicine 2012; 53: 1310-1325
- 21 Snyder W, Ford M, Warner G. et al. MIRD pamphlet no. 11. New York: The Society of Nuclear Medicine; 1975
- 22 Bolch WE, Bouchet LG, Robertson JS. et al. MIRD pamphlet no. 17: the dosimetry of nonuniform activity distributions – radionuclide S values at the voxel level. Journal of Nuclear Medicine 1999; 40: 11S-36S
- 23 Dodson CR, Marshall C, Durieux JC. et al. Using an Assumed Lung Mass Inaccurately Estimates the Lung Absorbed Dose in Patients Undergoing Hepatic (90)Yttrium Radioembolization Therapy. Cardiovasc Intervent Radiol 2022; 45: 1793-1800
- 24 Webster LA, Villalobos A, Majdalany BS. et al. Standard Radiation Dosimetry Models: What Interventional Radiologists Need to Know. Semin Intervent Radiol 2021; 38: 405-411
- 25 Ho S, Lau WY, Leung TW. et al. Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med 1996; 23: 947-952
- 26 Veenstra EB, Ruiter SJS, Haas RJ de. et al. Post-treatment three-dimensional voxel-based dosimetry after Yttrium-90 resin microsphere radioembolization in HCC. EJNMMI Res 2022; 12: 9
- 27 Brosch J, Gosewisch A, Kaiser L. et al. 3D image-based dosimetry for Yttrium-90 radioembolization of hepatocellular carcinoma: Impact of imaging method on absorbed dose estimates. Phys Med 2020; 80: 317-326
- 28 Levillain H, Bagni O, Deroose CM. et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. European journal of nuclear medicine and molecular imaging 2021; 48: 1570-1584
- 29 Konijnenberg M, Herrmann K, Kobe C. et al. EANM position paper on article 56 of the Council Directive 2013/59/Euratom (basic safety standards) for nuclear medicine therapy. Eur J Nucl Med Mol Imaging 2021; 48: 67-72
- 30 Chiesa C, Maccauro M. (166)Ho microsphere scout dose for more accurate radioembolization treatment planning. Eur J Nucl Med Mol Imaging 2020; 47: 744-747
- 31 Ilhan H, Todica A. „Auf den Punkt gebracht“ − Die Radioembolisation primärer und sekundärer Lebertumoren mit unterschiedlichen Mikrosphären. Der Nuklearmediziner 2018; 41: 145-156
- 32 Garin E, Rolland Y, Lenoir L. et al. Utility of Quantitative Tc-MAA SPECT/CT for yttrium-Labelled Microsphere Treatment Planning: Calculating Vascularized Hepatic Volume and Dosimetric Approach. Int J Mol Imaging 2011; 2011: 398051
- 33 Ilhan H, Goritschan A, Paprottka P. et al. Systematic evaluation of tumoral 99mTc-MAA uptake using SPECT and SPECT/CT in 502 patients before 90Y radioembolization. J Nucl Med 2015; 56: 333-338
- 34 d'Abadie P, Walrand S, Hesse M. et al. Prediction of tumor response and patient outcome after radioembolization of hepatocellular carcinoma using 90Y-PET-computed tomography dosimetry. Nucl Med Commun 2021; 42: 747-754
- 35 Martin M, Hocquelet A, Debordeaux F. et al. Comparison of perfused volume segmentation between cone-beam CT and (99m)Tc-MAA SPECT/CT for treatment dosimetry before selective internal radiation therapy using (90)Y-glass microspheres. Diagn Interv Imaging 2021; 102: 45-52
- 36 Brosch J, Gosewisch A, Kaiser L. et al. 3D image-based dosimetry for Yttrium-90 radioembolization of hepatocellular carcinoma: Impact of imaging method on absorbed dose estimates. Physica Medica 2020; 80: 317-326
- 37 Kafrouni M, Allimant C, Fourcade M. et al. Analysis of differences between (99m)Tc-MAA SPECT- and (90)Y-microsphere PET-based dosimetry for hepatocellular carcinoma selective internal radiation therapy. EJNMMI Res 2019; 9: 62
- 38 Jadoul A, Bernard C, Lovinfosse P. et al. Comparative dosimetry between (99m)Tc-MAA SPECT/CT and (90)Y PET/CT in primary and metastatic liver tumors. Eur J Nucl Med Mol Imaging 2020; 47: 828-837
- 39 Tafti BA, Padia SA. Dosimetry of Y-90 Microspheres Utilizing Tc-99m SPECT and Y-90 PET. Semin Nucl Med 2019; 49: 211-217
- 40 Dewaraja YK, Chun SY, Srinivasa RN. et al. Improved quantitative 90Y bremsstrahlung SPECT/CT reconstruction with Monte Carlo scatter modeling. Medical physics 2017; 44: 6364-6376
- 41 Rong X, Du Y, Ljungberg M. et al. Development and evaluation of an improved quantitative (90)Y bremsstrahlung SPECT method. Med Phys 2012; 39: 2346-2358
- 42 Chiesa C, Mira M, Bhoori S. et al. Radioembolization of hepatocarcinoma with (90)Y glass microspheres: treatment optimization using the dose-toxicity relationship. Eur J Nucl Med Mol Imaging 2020; 47: 3018-3032
- 43 Bourien H, Palard X, Rolland Y. et al. Yttrium-90 glass microspheres radioembolization (RE) for biliary tract cancer: a large single-center experience. Eur J Nucl Med Mol Imaging 2019; 46: 669-676
- 44 Alsultan AA, Roekel C van, Barentsz MW. et al. Dose-Response and Dose-Toxicity Relationships for Glass (90)Y Radioembolization in Patients with Liver Metastases from Colorectal Cancer. J Nucl Med 2021; 62: 1616-1623
- 45 Levillain H, Duran I Derijckere, Ameye L. et al. Personalised radioembolization improves outcomes in refractory intra-hepatic cholangiocarcinoma: a multicenter study. Eur J Nucl Med Mol Imaging 2019; 46: 2270-2279
- 46 Hoven AF van den, Rosenbaum CE, Elias SG. et al. Insights into the Dose-Response Relationship of Radioembolization with Resin 90Y-Microspheres: A Prospective Cohort Study in Patients with Colorectal Cancer Liver Metastases. J Nucl Med 2016; 57: 1014-1019
- 47 Bastiaannet R, Roekel C van, Smits MLJ. et al. First Evidence for a Dose-Response Relationship in Patients Treated with (166)Ho Radioembolization: A Prospective Study. J Nucl Med 2020; 61: 608-612
- 48 Roekel C van, Bastiaannet R, Smits MLJ. et al. Dose-Effect Relationships of (166)Ho Radioembolization in Colorectal Cancer. J Nucl Med 2021; 62: 272-279
- 49 Selwyn RG, Nickles RJ, Thomadsen BR. et al. A new internal pair production branching ratio of 90Y: the development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot 2007; 65: 318-327
- 50 Yue J, Mauxion T, Reyes DK. et al. Comparison of quantitative Y-90 SPECT and non-time-of-flight PET imaging in post-therapy radioembolization of liver cancer. Med Phys 2016; 43: 5779
- 51 Elschot M, Vermolen BJ, Lam MG. et al. Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS One 2013; 8: e55742
- 52 Lhommel R, Elmbt L van, Goffette P. et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging 2010; 37: 1654-1662
- 53 Kunnen B, Beijst C, Lam M. et al. Comparison of the Biograph Vision and Biograph mCT for quantitative (90)Y PET/CT imaging for radioembolisation. EJNMMI Phys 2020; 7: 14
- 54 Labour J, Boissard P, Baudier T. et al. Yttrium-90 quantitative phantom study using digital photon counting PET. EJNMMI Phys 2021; 8: 56
- 55 Zeimpekis KG, Mercolli L, Conti M. et al. Phantom-based evaluation of yttrium-90 datasets using biograph vision quadra. Eur J Nucl Med Mol Imaging 2023; 50: 1168-1182
- 56 Roosen J, Wijk MWM van, Westlund Gotby LEL. et al. Improving MRI-based dosimetry for holmium-166 transarterial radioembolization using a nonrigid image registration for voxelwise DeltaR2 * calculation. Med Phys 2023; 50: 935-946
- 57 Mikell JK, Mahvash A, Siman W. et al. Comparing voxel-based absorbed dosimetry methods in tumors, liver, lung, and at the liver-lung interface for (90)Y microsphere selective internal radiation therapy. EJNMMI Phys 2015; 2: 16
- 58 Reed DK, Stewart WH, Banta T. et al. Repeated Transarterial Radioembolization Adverse Event and Hepatotoxicity Profile in Cirrhotic Patients With Hepatocellular Carcinoma: A Single-Center Experience. Cureus 2022; 14: e23578
- 59 Salem R, Padia SA, Lam M. et al. Clinical and dosimetric considerations for Y90: recommendations from an international multidisciplinary working group. Eur J Nucl Med Mol Imaging 2019; 46: 1695-1704
- 60 Garin E, Rolland Y, Pracht M. et al. High impact of macroaggregated albumin-based tumour dose on response and overall survival in hepatocellular carcinoma patients treated with (90) Y-loaded glass microsphere radioembolization. Liver Int 2017; 37: 101-110
- 61 Strigari L, Sciuto R, Rea S. et al. Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y-SIR spheres: radiobiologic considerations. J Nucl Med 2010; 51: 1377-1385
- 62 Sangro B, Gil-Alzugaray B, Rodriguez J. et al. Liver disease induced by radioembolization of liver tumors: description and possible risk factors. Cancer 2008; 112: 1538-1546
- 63 Chiesa C, Mira M, Maccauro M. et al. Radioembolization of hepatocarcinoma with (90)Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology. Eur J Nucl Med Mol Imaging 2015; 42: 1718-1738
- 64 Chan KT, Alessio AM, Johnson GE. et al. Hepatotoxic Dose Thresholds by Positron-Emission Tomography After Yttrium-90 Radioembolization of Liver Tumors: A Prospective Single-Arm Observational Study. Cardiovasc Intervent Radiol 2018; 41: 1363-1372
- 65 Smits ML, Nijsen JF, Bosch MA van den. et al. Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose-escalation study. Lancet Oncol 2012; 13: 1025-1034
- 66 Garin E, Lenoir L, Edeline J. et al. Boosted selective internal radiation therapy with 90Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: a new personalized promising concept. Eur J Nucl Med Mol Imaging 2013; 40: 1057-1068
- 67 Riaz A, Gates VL, Atassi B. et al. Radiation segmentectomy: a novel approach to increase safety and efficacy of radioembolization. Int J Radiat Oncol Biol Phys 2011; 79: 163-171
- 68 Gabr A, Riaz A, Johnson GE. et al. Correlation of Y90-absorbed radiation dose to pathological necrosis in hepatocellular carcinoma: confirmatory multicenter analysis in 45 explants. Eur J Nucl Med Mol Imaging 2021; 48: 580-583
- 69 Malhotra A, Liu DM, Talenfeld AD. Radiation Segmentectomy and Radiation Lobectomy: A Practical Review of Techniques. Tech Vasc Interv Radiol 2019; 22: 49-57
- 70 Andel D, Lam M, Bruijne J de. et al. Dose finding study for unilobar radioembolization using holmium-166 microspheres to improve resectability in patients with HCC: the RALLY protocol. BMC Cancer 2023; 23: 771
- 71 Aussilhou B, Lesurtel M, Sauvanet A. et al. Right portal vein ligation is as efficient as portal vein embolization to induce hypertrophy of the left liver remnant. J Gastrointest Surg 2008; 12: 297-303
- 72 Ahmadzadehfar H, Meyer C, Ezziddin S. et al. Hepatic volume changes induced by radioembolization with 90Y resin microspheres. A single-centre study. Eur J Nucl Med Mol Imaging 2013; 40: 80-90
- 73 Garlipp B, Baere T de, Damm R. et al. Left-liver hypertrophy after therapeutic right-liver radioembolization is substantial but less than after portal vein embolization. Hepatology 2014; 59: 1864-1873
- 74 Theysohn JM, Ertle J, Muller S. et al. Hepatic volume changes after lobar selective internal radiation therapy (SIRT) of hepatocellular carcinoma. Clin Radiol 2014; 69: 172-178
- 75 Vouche M, Lewandowski RJ, Atassi R. et al. Radiation lobectomy: time-dependent analysis of future liver remnant volume in unresectable liver cancer as a bridge to resection. J Hepatol 2013; 59: 1029-1036
- 76 Edeline J, Lenoir L, Boudjema K. et al. Volumetric changes after (90)y radioembolization for hepatocellular carcinoma in cirrhosis: an option to portal vein embolization in a preoperative setting?. Ann Surg Oncol 2013; 20: 2518-2525
- 77 Teo JY, Goh BK, Cheah FK. et al. Underlying liver disease influences volumetric changes in the spared hemiliver after selective internal radiation therapy with 90Y in patients with hepatocellular carcinoma. J Dig Dis 2014; 15: 444-450
- 78 Grisanti F, Prieto E, Bastidas JF. et al. 3D voxel-based dosimetry to predict contralateral hypertrophy and an adequate future liver remnant after lobar radioembolization. Eur J Nucl Med Mol Imaging 2021; 48: 3048-3057
- 79 Palard X, Edeline J, Rolland Y. et al. Dosimetric parameters predicting contralateral liver hypertrophy after unilobar radioembolization of hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2018; 45: 392-401