Osteologie 2023; 32(04): 278-294
DOI: 10.1055/a-2171-7360
Review

Ossäre Bedeutung von Mineral- und Heilwässern: Physiologie und epidemiologische Evidenz

Effects of mineral and curative waters on bone health: Physiology and epidemiological evidence
Alexander Ströhle
1   Lebensmittelwissenschaft und Humanernährung, Leibniz Universität Hannover, Hannover, Germany
,
Andreas Hahn
1   Lebensmittelwissenschaft und Humanernährung, Leibniz Universität Hannover, Hannover, Germany
› Institutsangaben

Zusammenfassung

Mineral- und Heilwässer zeichnen sich durch eine sortenspezifische Zusammensetzung aus, so dass sich die Wässer auch ausernährungsphysiologischer Sicht voneinander unterscheiden. Viele Mineral- und Heilwässer bilden eine quantitativ bedeutsame Quelle für gut bioverfügbares Calcium und Magnesium. Calciumreiche Wässer stellen somit eine günstige Alternative zum gut löslichen Calciumcitrat dar, wie es in der Leitlinie der Bone Health & Osteoporosis Foundation bei Achlorhydrie oder eingeschränkter Magensäureproduktion (z. B. Therapie mit Protonenpumpeninhibitoren) als Calciumquelle empfohlen wird. Calciumwässer senken den Serumspiegel an Parathormon ähnlich stark wie Calcium aus Milch oder Supplementen mit einem äquivalenten Gehalt des Mineralstoffs. Damit verbunden ist bei alkalischen Calciumwässern eine Hemmung der Knochenresorption. Auch senken bikarbonatreiche Wässer die renale Säurelast sowie die Calciumverluste über den Urin. Ungeklärt ist der Einfluss der Wässer auf die Calciumbilanz und das Frakturrisiko. Der Natrium- und Kaliumgehalt der meisten Wässer ist zu gering, um den Knochenstoffwechsel nennenswert beeinflussen zu können. Auch üben Wässer mit moderatem Fluoridgehalt (0,70-1,0 mg/l) keinen, von anderen Nahrungsfaktoren (Calcium, Protein) unabhängigen Einfluss auf die Mikrostruktur der Knochen aus.

Abstract

Mineral waters and medicinal waters are characterised by their specific composition, which makes them different from a nutritional point of view. Many mineral and medicinal waters are a quantitatively significant source of readily bioavailable calcium and magnesium. Calcium-rich waters are therefore a favourable alternative to readily soluble calcium citrate, which is recommended by the guideline of the Bone Health & Osteoporosis Foundation as a source of calcium in cases of achlorhydria or restricted gastric acid production (e. g. therapy with proton pump inhibitors). Calcium waters lower serum parathyroid hormone similarly to calcium from milk or supplements with equivalent mineral content. Moreover, alkaline calcium waters inhibit bone resorption. Bicarbonate-rich waters also reduce renal acid load and, as a result, urinary calcium losses. However, the waters effect on calcium balance and fracture risk is unclear. Besides, the sodium and potassium content of most waters is too low to have a significant effect on bone metabolism. Even waters with a moderate fluoride content (0.70–1.0 mg/l) have no effect on bone microstructure, independent of other dietary factors (calcium, protein).



Publikationsverlauf

Eingereicht: 29. Juni 2023

Angenommen: 07. September 2023

Artikel online veröffentlicht:
06. Oktober 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Nieves JW, Lindsay R. Calcium and fracture risk. Am J Clin Nutr 2007; 86: 1579-80
  • 2 Jones DP, Park Y, Ziegler TR. Nutritional metabolomics: progress in addressing complexity in diet and health. Annu Rev Nutr 2012; 32: 183-202
  • 3 Afman L, Müller M. Nutrigenomics: from molecular nutrition to prevention of disease. J Am Diet Assoc 2006; 106: 569-76
  • 4 Hart NH, Newton RU, Tan J. et al. Biological basis of bone strength: anatomy, physiology and measurement. J Musculoskelet Neuronal Interact 2020; 20: 347-371
  • 5 Rizzoli R, Biver E, Brennan-Speranza TC. Nutritional intake and bone health. Lancet Diabetes Endocrinol 2021; 9: 606-621
  • 6 Ströhle A, Hahn A. Ernährung und Knochengesundheit [Nutrition and bone health: What ist the evidence?]. Med Monatsschr Pharm 2016; 39: 236-44
  • 7 Chevalley T, Rizzoli R. Acquisition of peak bone mass. Best Pract Res Clin Endocrinol Metab 2022; 36: 101616
  • 8 Weaver CM, Gordon CM, Janz KF. et al. The National Osteoporosis Foundation's position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 2016; 27: 1281-1386
  • 9 Fabiani R, Naldini G, Chiavarini M. Dietary Patterns in Relation to Low Bone Mineral Density and Fracture Risk: A Systematic Review and Meta-Analysis. Adv Nutr 2019; 10: 219-236
  • 10 Feng W, Wang X, Huang D. et al. Role of diet in osteoporosis incidence: Umbrella review of metaanalyses of prospective observational studies. Crit Rev Food Sci Nutr 2021; 1-10
  • 11 Burckhardt P. The effect of the alkali load of mineral water on bone metabolism: interventional studies. J Nutr 2008; 138: 435S-437S
  • 12 Pampaloni B, Brandi ML. Mineral water as food for bone: an overview. Int J Bone Frag 2022; 2: 48-55
  • 13 Vannucci L, Fossi C, Quattrini S. et al. Calcium Intake in Bone Health: A Focus on Calcium-Rich Mineral Waters. Nutrients 2018; 10: 1930
  • 14 N.N.: Trinkwasserverordnung in der Fassung der Bekanntmachung vom 10. März 2016 (BGBl. I S. 459), die zuletzt durch Artikel 1 der Verordnung vom 22. September 2021 (BGBl. I S. 4343) geändert worden ist. Im Internet: https://www.gesetze-im-internet.de/trinkwv_2001/BJNR095910001.html Stand: 01.03.2023
  • 15 Bourassa MW, Abrams SA, Belizán JM. et al. Interventions to improve calcium intake through foods in populations with low intake. Ann N Y Acad Sci 2022; 1511: 40-58
  • 16 Stadtwerke Heilbronn. Wasserhärte. Im Internet: https://www.stadtwerke-heilbronn.de/swh/wasserversorgung/wasserhaerte.php Stand: 02.03.2023
  • 17 Stadtwerke Greifswald. Trinkwasseranalyse. Im Internet https://www.sw-greifswald.de/Energie/Trinkwasser/Trinkwasseranalyse Stand: 02.03.2023
  • 18 N.N.: Mineral- und Tafelwasser-Verordnung vom 1. August 1984 (BGBl. I S. 1036), die zuletzt durch Artikel 25 der Verordnung vom 5. Juli 2017 (BGBl. I S. 2272) geändert worden ist. Im Internet https://www.gesetze-im-internet.de/min_tafelwv/BJNR010360984.html Stand: 01.03.2023
  • 19 N.N.: Richtline 2009/54/EG des Europäischen Parlaments und des Rates vom 18. Juni 2009 über die Gewinnung von und den Handel mit natürlichen Mineralwässern. Im Internet https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:164:0045:0058:DE:PDF Stand: 01.03.2023
  • 20 N.N. Verordnung (EU) Nr. 1169/2011 des Europäischen Parlaments und des Rates vom 25. Oktober 2011 betreffend die Information der Verbraucher über Lebensmittel und zur Änderung der Verordnungen (EG) Nr. 1924/2006 und (EG) Nr. 1925/2006 des Europäischen Parlaments und des Rates und zur Aufhebung der Richtlinie 87/250/EWG der Kommission, der Richtlinie 90/496/EWG des Rates, der Richtlinie 1999/10/EG der Kommission, der Richtlinie 2000/13/EG des Europäischen Parlaments und des Rates, der Richtlinien 2002/67/EG und 2008/5/EG der Kommission und der Verordnung (EG) Nr. 608/2004 der Kommission (Text von Bedeutung für den EWR). Im Internet: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32011R1169&from=EN Stand: 01.03.2023
  • 21 N.N.: Verordnung (EG) Nr. 1924/2006 des Europäischen Parlaments und des Rates vom 20. Dezember 2006 über nährwert- und gesundheitsbezogene Angaben über Lebensmittel. Im Internet: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32006R1924&from=DE Stand: 01.03.2023
  • 22 N.N. Verordnung (EU) Nr. 432/2012 der Kommission vom 16. Mai 2012 zur Festlegung einer Liste zulässiger anderer gesundheitsbezogener Angaben über Lebensmittel als Angaben über die Reduzierung eines Krankheitsrisikos sowie die Entwicklung und die Gesundheit von Kindern. Im Internet: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:02012R0432-20170822&from=EN Stand: 02.03.2023
  • 23 N.N. Verordnung (EU) Nr. 1228/2014 der Kommission vom 17. November 2014 über die Zulassung bzw. Nichtzulassung bestimmter gesundheitsbezogener Angaben über Lebensmittel betreffend die Verringerung eines Krankheitsrisikos. Im Internet: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX%3A32014R1228 Stand: 02.03.2023
  • 24 N.N.: Arzneimittelgesetz in der Fassung der Bekanntmachung vom 12. Dezember 2005 (BGBl. I S. 3394), das zuletzt durch Artikel 8c des Gesetzes vom 20. Dezember 2022 (BGBl. I S. 2793) geändert worden ist. Im Internet: https://www.gesetze-im-internet.de/amg_1976/AMG.pdf Stand: 01.03.2023
  • 25 Birke M, Rauch U, Harazim B. et al. Major and trace elements in German bottled water, their regional distribution, and accordance with national and international standards. J Geochem Exploration 2010; 107: 245-271
  • 26 Reimann C, Birke M. Geochemistry of European Bottled Water. Borntraeger Science Publishers. 2010
  • 27 Wynn E, Raetz E, Burckhardt P. The composition of mineral waters sourced from Europe and North America in respect to bone health: composition of mineral water optimal for bone. Br J Nutr 2009; 101: 1195-9
  • 28 Wasserfurth P, Schneider I, Ströhle A. et al. Effects of mineral waters on acid-base status in healthy adults: results of a randomized trial. Food Nutr Res 2019; 3: 63
  • 29 Garzon P, Eisenberg MJ. Variation in the mineral content of commercially available bottled waters: implications for health and disease. Am J Med 1998; 105: 125-30
  • 30 Heilwasserverzeichnis. Im Internet: https://www.heilwasser.com/service/heilwasserverzeichnis/ Stand: 20.06.2023
  • 31 Institute of Medicine (IOM) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Ross AC, Taylor CL, Yaktine AL, et al., editors. Dietary Reference Intakes for Calcium and Vitamin D. Washington (DC): National Academies Press (US); 2011. Im Internet: http://www.ncbi.nlm.nih.gov/books/NBK56070/ Stand 10.03.2023
  • 32 Brown EM, Chattopadhyay N, Vassilev PM. et al. The calcium-sensing receptor (CaR) permits Ca2+ to function as a versatile extracellular first messenger. Recent Prog Horm Res 1998; 53: 257-80
  • 33 Brown EM. Calcium receptor and regulation of parathyroid hormone secretion. Rev Endocr Metab Disord 2000; 1: 307-15
  • 34 Goltzman D, Hendy GN. The calcium-sensing receptor in bone--mechanistic and therapeutic insights. Nat Rev Endocrinol 2015; 11: 298-307
  • 35 Kužma M, Jackuliak P, Killinger Z. Parathyroid Hormone-Related Changes of Bone Structure. Physiol Res 2021; 70: S3-S11
  • 36 Drake MT, Srinivasan B, Mödder UI. et al. Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. J Clin Endocrinol Metab 2010; 95: 5056-62
  • 37 Goltzman D. Physiology of Parathyroid Hormone. Endocrinol Metab Clin North Am 2018; 47: 743-758
  • 38 Cianferotti L, Gomes AR, Fabbri S. et al. The calcium-sensing receptor in bone metabolism: from bench to bedside and back. Osteoporos Int 2015; 26: 2055-71
  • 39 Peterlik M, Kállay E, Cross HS. Calcium nutrition and extracellular calcium sensing: relevance for the pathogenesis of osteoporosis, cancer and cardiovascular diseases. Nutrients 2013; 5: 302-27
  • 40 Kahil K, Weiner S, Addadi L. et al. Ion Pathways in Biomineralization: Perspectives on Uptake, Transport, and Deposition of Calcium, Carbonate, and Phosphate. J Am Chem Soc 2021; 143: 21100-21112
  • 41 Vatanparast H, Bailey DA, Baxter-Jones AD. et al. Calcium requirements for bone growth in Canadian boys and girls during adolescence. Br J Nutr 2010; 103: 575-80
  • 42 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2015. Scientific Opinion on Dietary Reference Values for calcium. EFSA Journal 2015; 13: 4101, 82 pp
  • 43 Jackman LA, Millane SS, Martin BR. et al. Calcium retention in relation to calcium intake and postmenarcheal age in adolescent females. Am J Clin Nutr 1997; 66: 327-333
  • 44 Braun M, Martin BR, Kern M. et al. Calcium retention in adolescent boys on a range of controlled calcium intakes. Am J Clin Nutr 2006; 84: 414-8
  • 45 Liu Y, Le S, Liu Y. et al. The effect of calcium supplementation in people under 35 years old: A systematic review and meta-analysis of randomized controlled trials. Elife 2022; 11: e79002
  • 46 Ströhle A, Hadji P, Hahn A. Calcium and bone health--goodbye, calcium supplements?. Climacteric 2015; 18: 702-14
  • 47 Nieves JW, Komar L, Cosman F. et al. Calcium potentiates the effect of estrogen and calcitonin on bone mass: review and analysis. Am J Clin Nutr 1998; 67: 18-24
  • 48 Nordin BE. The effect of calcium supplementation on bone loss in 32 controlled trials in postmenopausal women. Osteoporos Int 2009; 20: 2135-43
  • 49 Wu J, Xu L, Lv Y. et al. Quantitative analysis of efficacy and associated factors of calcium intake on bone mineral density in postmenopausal women. Osteoporos Int 2017; 28: 2003-2010
  • 50 Cui Y, Cai H, Zheng W. et al. Associations of Dietary Intakes of Calcium, Magnesium, and Soy Isoflavones With Bone Fracture Risk in Men: A Prospective Study. JBMR Plus 2021; 6: e10563
  • 51 Khan B, Nowson CA, Daly RM. et al. Higher Dietary Calcium Intakes Are Associated With Reduced Risks of Fractures, Cardiovascular Events, and Mortality: A Prospective Cohort Study of Older Men and Women. J Bone Miner Res 2015; 30: 1758-66
  • 52 Bolland MJ, Leung W, Tai V. et al. Calcium intake and risk of fracture: systematic review. BMJ 2015; 351: h4580
  • 53 Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA. et al. Calcium intake and hip fracture risk in men and women: a meta-analysis of prospective cohort studies and randomized controlled trials. Am J Clin Nutr 2007; 86: 1780-90
  • 54 Thorpe DL, Beeson WL, Knutsen R. et al. Dietary patterns and hip fracture in the Adventist Health Study 2: combined vitamin D and calcium supplementation mitigate increased hip fracture risk among vegans. Am J Clin Nutr 2021; 114: 488-495
  • 55 Tong TYN, Appleby PN, Armstrong MEG. et al. Vegetarian and vegan diets and risks of total and site-specific fractures: results from the prospective EPIC-Oxford study. BMC Med 2020; 18: 353
  • 56 Appleby P, Roddam A, Allen N. et al. Comparative fracture risk in vegetarians and nonvegetarians in EPIC-Oxford. Eur J Clin Nutr 2007; 61: 1400-6
  • 57 LeBoff MS, Greenspan SL, Insogna KL. et al. The clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int 2022; 33: 2049-2102
  • 58 Sambrook PN, Kotowicz M, Nash P. et al. Prevention and treatment of glucocorticoid-induced osteoporosis: a comparison of calcitriol, vitamin D plus calcium, and alendronate plus calcium. J Bone Miner Res 2003; 18: 919-24
  • 59 Max Rubner-Institut Bundesforschungsinstitut für Ernährung und Lebensmittel. Nationale Verzehrsstudie II. Die bundesweite Befragung zur Ernährung von Jugendlichen und Erwachsenen. Ergebnisbericht Teil 2. Karlsruhe 2008. Im Internet: https://www.mri.bund.de/fileadmin/MRI/Institute/EV/NVSII_Abschlussbericht_Teil_2.pdf Stand: 15.03.2023
  • 60 Bohmer H, Müller H, Resch KL. Calcium supplementation with calcium-rich mineral waters: a systematic review and meta-analysis of its bioavailability. Osteoporos Int 2000; 11: 938-43
  • 61 Azoulay A, Garzon P, Eisenberg MJ. Comparison of the mineral content of tap water and bottled waters. J Gen Intern Med 2001; 16: 168-75
  • 62 Wolters M. Ernährung ausgewählter Personengruppen. In: Hahn A, Ströhle A, Wolters M. Ernährung. Physiologische Grundlagen, Prävention, Therapie. 4. Auflage. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2023 (in Druck).
  • 63 Klos B, Cook J, Crepaz L. etal Impact of energy density on energy intake in children and adults: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr 2023; 62: 1059-1076
  • 64 Robinson E, Khuttan M, McFarland-Lesser I. et al. Calorie reformulation: a systematic review and meta-analysis examining the effect of manipulating food energy density on daily energy intake. Int J Behav Nutr Phys Act 2022; 19: 48
  • 65 Hahn A. Übergewicht und Adipositas. In: Hahn A, Ströhle A, Wolters M. Ernährung. Physiologische Grundlagen, Prävention, Therapie. 4. Auflage. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2023 (in Druck).
  • 66 Ströhle A, Hahn A. Kritische Mikronährstoffe bei veganer Ernährung – ein Update. Med Monatsschr Pharm 2018; 13-121
  • 67 Bronner F, Pansu D. Nutritional aspects of calcium absorption. J Nutr 1999; 129: 9-12
  • 68 Heaney RP, Recker RR, Stegman MR. et al. Calcium absorption in women: relationships to calcium intake, estrogen status, and age. J Bone Miner Res 1989; 4: 469-75
  • 69 Ebeling PR, Sandgren ME, DiMagno EP. et al. Evidence of an age-related decrease in intestinal responsiveness to vitamin D: relationship between serum 1,25-dihydroxyvitamin D3 and intestinal vitamin D receptor concentrations in normal women. J Clin Endocrinol Metab 1992; 75: 176-82
  • 70 Pattanaungkul S, Riggs BL, Yergey AL. et al. Relationship of intestinal calcium absorption to 1,25-dihydroxyvitamin D [1,25(OH)2D] levels in young versus elderly women: evidence for age-related intestinal resistance to 1,25(OH)2D action. J Clin Endocrinol Metab 2000; 85: 4023-7
  • 71 Ensrud KE, Duong T, Cauley JA. et al. Low fractional calcium absorption increases the risk for hip fracture in women with low calcium intake. Study of Osteoporotic Fractures Research Group. Ann Intern Med 2000; 132: 345-53
  • 72 Nordin BE, Need AG, Morris HA. et al. Effect of age on calcium absorption in postmenopausal women. Am J Clin Nutr 2004; 80: 998-1002
  • 73 Kent GN, Price RI, Gutteridge DH. et al. The efficiency of intestinal calcium absorption is increased in late pregnancy but not in established lactation. Calcif Tissue Int 1991; 48: 293-5
  • 74 O’Brien KO, Nathanson MS, Mancini J. et al. Calcium absorption is significantly higher in adolescents during pregnancy than in the early postpartum period. Am J Clin Nutr 2003; 78: 1188-93
  • 75 Kovacs CS. Calcium and bone metabolism in pregnancy and lactation. J Clin Endocrinol Metab 2001; 86: 2344-8
  • 76 Cifuentes M, Morano AB, Chowdhury HA. et al. Energy restriction reduces fractional calcium absorption in mature obese and lean rats. J Nutr 2002; 132: 2660-6
  • 77 Riedt CS, Brolin RE, Sherrell RM. et al. True fractional calcium absorption is decreased after Roux-en-Y gastric bypass surgery. Obesity (Silver Spring) 2006; 14: 1940-8
  • 78 Gallagher JC, Yalamanchili V, Smith LM. The effect of vitamin D on calcium absorption in older women. J Clin Endocrinol Metab 2012; 97: 3550-6
  • 79 Aloia JF, Dhaliwal R, Shieh A. et al. Vitamin D supplementation increases calcium absorption without a threshold effect. Am J Clin Nutr 2014; 99: 624-31
  • 80 Shapses SA, Sukumar D, Schneider SH. et al. Vitamin D supplementation and calcium absorption during caloric restriction: a randomized double-blind trial. Am J Clin Nutr 2013; 97: 637-45
  • 81 Nordin BE. Evolution of the calcium paradigm: the relation between vitamin D, serum calcium and calcium absorption. Nutrients 2010; 2: 997-1004
  • 82 Need AG, O’Loughlin PD, Morris HA. Vitamin D metabolites and calcium absorption in severe vitamin D deficiency. J Bone Miner Res 2008; 23: 1859-63
  • 83 Bienaimé F, Prié D, Friedlander G. et al. Vitamin D metabolism and activity in the parathyroid gland. Mol Cell Endocrinol 2011; 347: 30-41
  • 84 Fleet JC, Schoch RD. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit Rev Clin Lab Sci 2010; 47: 181-95
  • 85 Kellett GL. Alternative perspective on intestinal calcium absorption: proposed complementary actions of Ca(v)1.3 and TRPV6. Nutr Rev 2011; 69: 347-70
  • 86 Wawrzyniak N, Suliburska J. Nutritional and health factors affecting the bioavailability of calcium: a narrative review. Nutr Rev 2021; 79: 1307-1320
  • 87 Weaver CM, Proulx WR, Heaney R. Choices for achieving adequate dietary calcium with a vegetarian diet. Am J Clin Nutr 1999; 70: 543S-548S
  • 88 Heaney RP. Absorbability and utility of calcium in mineral waters. Am J Clin Nutr 2006; 84: 371-4
  • 89 Guéguen L, Pointillart A. The bioavailability of dietary calcium. J Am Coll Nutr 2000; 19: 119S-136S
  • 90 Wiesner A, Szuta M, Galanty A. et al. Optimal Dosing Regimen of Osteoporosis Drugs in Relation to Food Intake as the Key for the Enhancement of the Treatment Effectiveness-A Concise Literature Review. Foods 2021; 10: 720
  • 91 Wiesner A, Gajewska D, Paśko P. Levothyroxine Interactions with Food and Dietary Supplements-A Systematic Review. Pharmaceuticals (Basel) 2021; 143: 206
  • 92 N.N. Natural Medicines. Calcium – Professional handout/Drug interactions. Im Internet: https://naturalmedicines.therapeuticresearch.com Stand: 10.02.2023
  • 93 Joo NS, Dawson-Hughes B, Kim YS. et al. Impact of calcium and vitamin D insufficiencies on serum parathyroid hormone and bone mineral density: analysis of the fourth and fifth Korea National Health and Nutrition Examination Survey (KNHANES IV-3, 2009 and KNHANES V-1, 2010). J Bone Miner Res 2013; 28: 764-70
  • 94 Paik JM, Farwell WR, Taylor EN. Demographic, dietary, and serum factors and parathyroid hormone in the National Health and Nutrition Examination Survey. Osteoporos Int 2012; 23: 1727-36
  • 95 Steingrimsdottir L, Gunnarsson O, Indridason OS. et al. Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. JAMA 2005; 294: 2336-41
  • 96 Kochersberger G, Bales C, Lobaugh B. et al. Calcium supplementation lowers serum parathyroid hormone levels in elderly subjects. J Gerontol 1990; 45: M159-62
  • 97 Riggs BL, O'Fallon WM, Muhs J. et al. Long-term effects of calcium supplementation on serum parathyroid hormone level, bone turnover, and bone loss in elderly women. J Bone Miner Res 1998; 13: 168-74
  • 98 McKane WR, Khosla S, Egan KS. et al. Role of calcium intake in modulating age-related increases in parathyroid function and bone resorption. J Clin Endocrinol Metab 1996; 81: 1699-703
  • 99 Guillemant J, Le HT, Accarie C. et al. Mineral water as a source of dietary calcium: acute effects on parathyroid function and bone resorption in young men. Am J Clin Nutr 2000; 71: 999-1002
  • 100 Guillemant J, Le HT, Guillemant S. et al. Acute effects induced by a calcium-rich mineral water on calcium metabolism and on parathyroid function. Osteoporos Int 1997; 7: 85-6
  • 101 Greupner T, Schneider I, Hahn A. Calcium Bioavailability from Mineral Waters with Different Mineralization in Comparison to Milk and a Supplement. J Am Coll Nutr 2017; 36: 386-390
  • 102 Meunier PJ, Jenvrin C, Munoz F. et al. Consumption of a high calcium mineral water lowers biochemical indices of bone remodeling in postmenopausal women with low calcium intake. Osteoporos Int 2005; 16: 1203-9
  • 103 Burckhardt P, Waldvogel Abramowski S. et al. Bicarbonate in mineral water inhibits bone resorption. J None Mineral Res 2002; 18(S1): S107-M360. Zitiert nach: Burckhardt P. The effect of the alkali load of mineral water on bone metabolism: interventional studies. J Nutr 2008; 138: 435S-437S
  • 104 Wynn E, Krieg MA, Aeschlimann JM. et al. Alkaline mineral water lowers bone resorption even in calcium sufficiency: alkaline mineral water and bone metabolism. Bone 2009; 44: 120-4
  • 105 Brown JP, Don-Wauchope A, Douville P. et al. Current use of bone turnover markers in the management of osteoporosis. Clin Biochem 2022; 109-110: 1-10
  • 106 Tian A, Ma J, Feng K. et al. Reference markers of bone turnover for prediction of fracture: a meta-analysis. J Orthop Surg Res 2019; 14: 68
  • 107 Aptel I, Cance-Rouzaud A, Grandjean H. Association between calcium ingested from drinking water and femoral bone density in elderly women: evidence from the EPIDOS cohort. J Bone Miner Res 1999; 14: 829-33
  • 108 Costi D, Calcaterra PG, Iori N. et al. Importance of bioavailable calcium drinking water for the maintenance of bone mass in post-menopausal women. J Endocrinol Invest 1999; 22: 852-6
  • 109 Cepollaro C, Orlandi G, Gonnelli S. et al. Effect of calcium supplementation as a high-calcium mineral water on bone loss in early postmenopausal women. Calcif Tissue Int 1996; 59: 238-9
  • 110 Huang Y, Ma X, Tan Y. et al. Consumption of Very Low Mineral Water Is Associated with Lower Bone Mineral Content in Children. J Nutr 2019; 149: 1994-2000
  • 111 Dahl C, Søgaard AJ, Tell GS. et al. Population data on calcium in drinking water and hip fracture: An association may depend on other minerals in water. A NOREPOS study. Bone 2015; 81: 292-299
  • 112 Dawson-Hughes B. Acid-base balance of the diet-implications for bone and muscle. Eur J Clin Nutr 2020; 74: 7-13
  • 113 Bushinsky DA. Acid-base imbalance and the skeleton. Eur J Nutr 2001; 40: 238-44
  • 114 Arnett T. Regulation of bone cell function by acid-base balance. Proc Nutr Soc 2003; 62: 511-20
  • 115 Krieger NS, Bushinsky DA. Metabolic acidosis regulates RGS16 and G protein signaling in osteoblasts. Am J Physiol Renal Physiol 2021; 321: F424-F430
  • 116 Krieger NS, Chen L, Becker J. et al. Effect of Osteoblast-Specific Deletion of the Proton Receptor OGR1. JBMR Plus 2022; 6: e10691
  • 117 Kim GH. Renal Mechanisms for Hypercalciuria Induced by Metabolic Acidosis. Am J Nephrol 2022; 53: 839-846
  • 118 Boro H, Khatiwada S, Alam S. et al. Renal Tubular Acidosis Manifesting as Severe Metabolic Bone Disease. touchREV Endocrinol 2021; 17: 59-67
  • 119 Mathur V, Reaven NL, Funk SE. et al. Association of metabolic acidosis with fractures, falls, protein-calorie malnutrition and failure to thrive in patients with chronic kidney disease. Clin Kidney J 2022; 15: 1379-1386
  • 120 Frassetto LA, Sebastian A. Commentary to accompany the paper entitled 'nutritional disturbance in acid-base balance and osteoporosis: a hypothesis that disregards the essential homeostatic role of the kidney', by Jean-Philippe Bonjour. Br J Nutr 2013; 110: 1935-7
  • 121 Frassetto LA, Lanham-New SA, Macdonald HM. et al. Standardizing terminology for estimating the diet-dependent net acid load to the metabolic system. J Nutr 2007; 137: 1491-2
  • 122 Kurtz I, Maher T, Hulter HN. et al. Effect of diet on plasma acid-base composition in normal humans. Kidney Int 1983; 24: 670-80
  • 123 Remer T. Die Rolle der nahrungsbedinten Säurebelastung für den Knochen. Osteologie 2018; 2: 78-82
  • 124 Ströhle A, Remer T. Ernährung und Säure-Basen-Haushalt. Physiologie und Prävention. Ernährung im Fokus 2014; 14: 314-324
  • 125 Fenton TR, Eliasziw M, Lyon AW. et al. Meta-analysis of the quantity of calcium excretion associated with the net acid excretion of the modern diet under the acid-ash diet hypothesis. Am J Clin Nutr 2008; 88: 1159-66
  • 126 Rylander R, Remer T, Berkemeyer S. et al. Acid-base status affects renal magnesium losses in healthy, elderly persons. J Nutr 2006; 136: 2374-7
  • 127 Nicoll R, McLaren Howard J. The acid-ash hypothesis revisited: a reassessment of the impact of dietary acidity on bone. J Bone Miner Metab 2014; 32: 469-75
  • 128 Frassetto L, Banerjee T, Powe N. et al. Acid Balance, Dietary Acid Load, and Bone Effects-A Controversial Subject. Nutrients 2018; 10: 517
  • 129 Fenton TR, Tough SC, Lyon AW. et al. Causal assessment of dietary acid load and bone disease: a systematic review & meta-analysis applying Hill's epidemiologic criteria for causality. Nutr J 2011; 10: 41
  • 130 Bonjour JP. Nutritional disturbance in acid-base balance and osteoporosis: a hypothesis that disregards the essential homeostatic role of the kidney. Br J Nutr 2013; 110: 1168-77
  • 131 Ströhle A, Hahn A, Sebastian A. Estimation of the diet-dependent net acid load in 229 worldwide historically studied hunter-gatherer societies. Am J Clin Nutr 2010; 91: 406-12
  • 132 Ströhle A, Waldmann A, Koschizke J. et al. Diet-dependent net endogenous acid load of vegan diets in relation to food groups and bone health-related nutrients: results from the German Vegan Study. Ann Nutr Metab 2011; 59: 117-26
  • 133 Berkemeyer S, Vormann J, Günther AL. et al. Renal net acid excretion capacity is comparable in prepubescence, adolescence, and young adulthood but falls with aging. J Am Geriatr Soc 2008; 56: 1442-8
  • 134 Frassetto L, Sebastian A. Age and systemic acid-base equilibrium: analysis of published data. J Gerontol A Biol Sci Med Sci 1996; 51: B91-9
  • 135 Siener R, Jahnen A, Hesse A. Influence of a mineral water rich in calcium, magnesium and bicarbonate on urine composition and the risk of calcium oxalate crystallization. Eur J Clin Nutr 2004; 58: 270-6
  • 136 Kessler T, Hesse A. Cross-over study of the influence of bicarbonate-rich mineral water on urinary composition in comparison with sodium potassium citrate in healthy male subjects. Br J Nutr 2000; 84: 865-71
  • 137 Fenton TR, Lyon AW, Eliasziw M. et al. Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance. J Bone Miner Res 2009; 24: 1835-40
  • 138 Buclin T, Cosma M, Appenzeller M. et al. Diet acids and alkalis influence calcium retention in bone. Osteoporos Int 2001; 12: 493-9
  • 139 Han Y, An M, Yang L. et al. Effect of Acid or Base Interventions on Bone Health: A Systematic Review, Meta-Analysis, and Meta-Regression. Adv Nutr 2021; 12: 1540-1557
  • 140 Roux S, Baudoin C, Boute D. et al. Biological effects of drinking-water mineral composition on calcium balance and bone remodeling markers. J Nutr Health Aging 2004; 8: 380-4
  • 141 Fasihi S, Fazelian S, Farahbod F. et al. Effect of Alkaline Drinking Water on Bone Density of Postmenopausal Women with Osteoporosis. J Menopausal Med 2021; 27: 94-101
  • 142 García-Gavilán JF, Martínez A, Konieczna J. et al. U-Shaped Association between Dietary Acid Load and Risk of Osteoporotic Fractures in 2 Populations at High Cardiovascular Risk. J Nutr 2021; 151: 152-161
  • 143 Castiglioni S, Cazzaniga A, Albisetti W. et al. Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients 2013; 5: 3022-33
  • 144 Lau KH, Baylink DJ. Molecular mechanism of action of fluoride on bone cells. J Bone Miner Res 1998; 13: 1660-7
  • 145 Pak CY, Zerwekh JE, Antich P. Anabolic effects of fluoride on bone. Trends Endocrinol Metab 1995; 6: 229-34
  • 146 Lanham-New SA. The balance of bone health: tipping the scales in favor of potassium-rich, bicarbonate-rich foods. J Nutr 2008; 138: 172S-177S
  • 147 Weaver CM. Potassium and health. Adv Nutr 2013; 4: 368S-77S
  • 148 Hannon MJ, Verbalis JG. Sodium homeostasis and bone. Curr Opin Nephrol Hypertens 2014; 23: 370-6
  • 149 Fatahi S, Namazi N, Larijani B. et al. The Association of Dietary and Urinary Sodium With Bone Mineral Density and Risk of Osteoporosis: A Systematic Review and Meta-Analysis. J Am Coll Nutr 2018; 37: 522-532
  • 150 Ekmekcioglu C. Intestinal bioavailability of minerals and trace elements from milk and beverages in humans. Nahrung 2000; 44: 390-7
  • 151 Verhas M, de la Guéronnière V, Grognet JM. Magnesium bioavailability from mineral water. A study in adult men. Eur J Clin Nutr 2002; 56: 442-7
  • 152 Sabatier M, Arnaud MJ, Kastenmayer P. et al. Meal effect on magnesium bioavailability from mineral water in healthy women. Am J Clin Nutr 2002; 75: 65-71
  • 153 Schneider I, Greupner T, Hahn A. Magnesium bioavailability from mineral waters with different mineralization levels in comparison to bread and a supplement. Food Nutr Res 2017; 61: 1384686
  • 154 Rosanoff A, Weaver CM, Rude RK. Suboptimal magnesium status in the United States: are the health consequences underestimated?. Nutr Rev 2012; 70: 153-64
  • 155 Rosanoff A, West C, Elin RJ. et al. Recommendation on an updated standardization of serum magnesium reference ranges. Eur J Nutr 2022; 61: 3697-3706
  • 156 Schulte A, Schiefer M, Stoll R. et al. Floridkonzentration in deutschen Mineralwässern. Dtsch Zahnärztl Z 1996; 51: 763-767
  • 157 Carwile JL, Ahrens KA, Seshasayee SM. et al. Predictors of Plasma Fluoride Concentrations in Children and Adolescents. Int J Environ Res Public Health 2020; 17: 9205
  • 158 Hellwig H. Fluoride – Chemie und Biochemie. Dtsch Zahnäztl Z 1999; 51: 638-648
  • 159 Demos LL, Kazda H, Cicuttini FM. et al. Water fluoridation, osteoporosis, fractures--recent developments. Aust Dent J 2001; 46: 80-7
  • 160 Godebo TR, Jeuland M, Tekle-Haimanot R. et al. Bone quality in fluoride-exposed populations: A novel application of the ultrasonic method. Bone Rep 2019; 12: 100235
  • 161 Helte E, Donat Vargas C, Kippler M. et al. Fluoride in Drinking Water, Diet, and Urine in Relation to Bone Mineral Density and Fracture Incidence in Postmenopausal Women. Environ Health Perspect 2021; 129: 47005
  • 162 Yin XH, Huang GL, Lin DR. et al. Exposure to fluoride in drinking water and hip fracture risk: a meta-analysis of observational studies. PLoS One 2015; 10: e0126488
  • 163 Oweis RR, Levy SM, Eichenberger-Gilmore JM. et al. Fluoride intake and cortical and trabecular bone characteristics in adolescents at age 17: A prospective cohort study. Community Dent Oral Epidemiol 2018; 46: 527-534
  • 164 Feskanich D, Owusu W, Hunter DJ. et al. Use of toenail fluoride levels as an indicator for the risk of hip and forearm fractures in women. Epidemiology 1998; 9: 412-6
  • 165 Hillier S, Cooper C, Kellingray S. et al. Fluoride in drinking water and risk of hip fracture in the UK: a case-control study. Lancet 2000; 355: 265-9
  • 166 Näsman P, Ekstrand J, Granath F. et al. Estimated drinking water fluoride exposure and risk of hip fracture: a cohort study. J Dent Res 2013; 92: 1029-34
  • 167 Sowers M, Whitford GM, Clark MK. et al. Elevated serum fluoride concentrations in women are not related to fractures and bone mineral density. J Nutr 2005; 135: 2247-52
  • 168 Saha PK, Oweis RR, Zhang X. et al. Effects of fluoride intake on cortical and trabecular bone microstructure at early adulthood using multi-row detector computed tomography (MDCT). Bone 2021; 146: 115882
  • 169 Hu L, Ji J, Li D. et al. The combined effect of vitamin K and calcium on bone mineral density in humans: a meta-analysis of randomized controlled trials. J Orthop Surg Res 2021; 16: 592