Subscribe to RSS
DOI: 10.1055/a-2172-1216
Synthesis of Polycyclic Aromatic Hydrocarbons with Highly Twisted N-Doped Heptalene
Abstract
A series of N-doped heptalene-containing polycyclic aromatic hydrocarbons (PAHs) have been synthesized and characterized in comparison with the N-doped azulene analogs. The crystal structure revealed its highly twisted geometry with a dihedral angle of 105.7° in the cove region of the N-doped dibenzoheptalene backbone. In addition, the electronic structure was both theoretically and experimentally investigated compared with the PAH bearing N-doped azulene unit. Our study provides a new synthetic strategy towards N-doped heptalene-embedded PAHs, and gives insights into the electronic properties of novel π-systems with N-doped nonalternant topologies.
Publication History
Received: 03 July 2023
Accepted after revision: 30 August 2023
Accepted Manuscript online:
08 September 2023
Article published online:
12 December 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Fei Y, Liu J. Adv. Sci. 2022; 9: 2201000
- 1b Pun SH, Miao Q. Acc. Chem. Res. 2018; 51: 1630
- 1c Liu Y, Ma Z, Wang Z, Jiang W. J. Am. Chem. Soc. 2022; 144: 11397
- 1d Wang J, Gámez FG, Marín-Beloqui J, Diaz-Andres A, Miao X, Casanova D, Casado J, Liu J. Angew. Chem. Int. Ed. 2023; 62: e202217124
- 2a Ong A, Tao T, Jiang Q, Han Y, Ou Y, Huang KW, Chi C. Angew. Chem. Int. Ed. 2022; 61: e202209286
- 2b Fei Y, Fu Y, Bai X, Du L, Li Z, Komber H, Low K-H, Zhou S, Phillips DL, Feng X, Liu J. J. Am. Chem. Soc. 2021; 143: 2353
- 3a Horii K, Kishi R, Nakano M, Shiomi D, Sato K, Takui T, Konishi A, Yasuda M. J. Am. Chem. Soc. 2022; 144: 3370
- 3b Konishi A, Yasuda M. Chem. Lett. 2021; 50: 195
- 3c Wu F, Ma J, Lombardi F, Fu Y, Liu F, Huang Z, Liu R, Komber H, Alexandropoulos DI, Dmitrieva E, Lohr TG, Israel N, Popov AA, Liu J, Bogani L, Feng X. Angew. Chem. Int. Ed. 2022; 61: e202202170
- 4 Mora-Fuentes JP, Codesal MD, Reale M, Cruz CM, Jiménez VG, Sciortino A, Cannas M, Messina F, Blanco V, Campaña AG. Angew. Chem. Int. Ed. 2023; 62: e202301356
- 5 Rickhaus M, Mayor M, Juríček M. Chem. Soc. Rev. 2017; 46: 1643
- 6a Wang XY, Yao XL, Narita A, Mullen K. Acc. Chem. Res. 2019; 52: 2491
- 6b Wang WF, Hanindita F, Tanaka Y, Ochiai K, Sato H, Li YX, Yasuda T, Ito S. Angew. Chem. Int. Ed. 2023; 62: e202218176
- 6c Yu Y, Wang L, Lin DQ, Rana S, Mali KS, Ling HF, Xie LH, De Feyter S, Liu JZ. Angew. Chem. Int. Ed. 2023; 62: e202303335
- 6d Borissov A, Maurya YK, Moshniaha L, Wong WS, Zyla-Karwowska M, Stepien M. Chem. Rev. 2022; 122: 565
- 7a Nebauer J, Neiß C, Krug M, Vogel A, Fehn D, Ozaki S, Rominger F, Meyer K, Kamada K, Guldi DM, Görling A, Kivala M. Angew. Chem. Int. Ed. 2022; 61: e202205287
- 7b Luo H, Liu J. Angew. Chem. Int. Ed. 2023; 62: e202302761
- 7c Chaolumen Chaolumen, Stepek IA, Yamada KE, Ito H, Itami K. Angew. Chem. Int. Ed. 2021; 60: 23508
- 7d Krzeszewski M, Dobrzycki Ł, Sobolewski AL, Cyrański MK, Gryko DT. Angew. Chem. Int. Ed. 2021; 60: 14998
- 7e Qiu Z-L, Chen X-W, Huang Y-D, Wei R-J, Chu K-S, Zhao X-J, Tan Y-Z. Angew. Chem. Int. Ed. 2022; 61: e202116955
- 8a Vogel E, Kerimis D, Allison NT, Zellerhoff R, Wassen J. Angew. Chem. Int. Ed. 1979; 18: 545
- 8b Dauben Jr HJ, Bertelli DJ. J. Am. Chem. Soc. 1961; 83: 4659
- 9 Xin H, Hou B, Gao X. Acc. Chem. Res. 2021; 54: 1737
- 10a Ma J, Fu Y, Dmitrieva E, Liu F, Komber H, Hennersdorf F, Popov AA, Weigand JJ, Liu J, Feng X. Angew. Chem. Int. Ed. 2020; 59: 5637
- 10b Duan C, Zhang J, Xiang J, Yang X, Gao X. Angew. Chem. Int. Ed. 2022; 61: e202201494
- 11a Yamamoto K, Saitho Y, Iwaki D, Ooka T. Angew. Chem. Int. Ed. 1991; 30: 1173
- 11b Ogawa N, Yamaoka Y, Takikawa H, Yamada K-i, Takasu K. J. Am. Chem. Soc. 2020; 142: 13322
- 11c Han Y, Xue Z, Li G, Gu Y, Ni Y, Dong S, Chi C. Angew. Chem. Int. Ed. 2020; 59: 9026
- 12a Anderson Jr AG, Steckler BM. J. Am. Chem. Soc. 1959; 81: 4941
- 12b Michl J, Thulstrup EW. Tetrahedron 1976; 32: 205
- 12c Shevyakov SV, Li H, Muthyala R, Asato AE, Croney JC, Jameson DM, Liu RSH. J. Phys. Chem. A 2003; 107: 3295
- 13a Lindner HJ, Kitschke B. Angew. Chem. Int. Ed. 1976; 15: 106
- 13b Boyd GV. Tetrahedron 1966; 22: 3409
- 14a Michalsky I, Gensch V, Walla C, Hoffmann M, Rominger F, Oeser T, Tegeder P, Dreuw A, Kivala M. Chem. Eur. J. 2022; 28: e202200326
- 14b Ito M, Kawasaki R, Kanyiva KS, Shibata T. Eur. J. Org. Chem. 2016; 2016: 5234
- 14c Wagner J, Zimmermann Crocomo P, Kochman MA, Kubas A, Data P, Lindner M. Angew. Chem. Int. Ed. 2022; 61: e202202232
- 15 Zhang K, El Bitar Nehme M, Hope PA, Rickhaus M. Helv. Chim. Acta. 2023; 106: e202200195
- 16 Nishimura Y, Harimoto T, Suzuki T, Ishigaki Y. Chem. Eur. J. 2023; 29: e202301759
- 17a Fang M-Y, Chen L-P, Huang L, Fang D-M, Chen X-Z, Wang B-Q, Feng C, Xiang S-K. J. Org. Chem. 2021; 86: 9096
- 17b Cheng C, Tu D, Zuo X, Wu Z, Wan B, Zhang Y. Org. Lett. 2021; 23: 1239
- 18 Hu T, Ye Z, Zhu K, Xu K, Wu Y, Zhang F. Org. Lett. 2020; 22: 505
- 19 The UV-Vis spectroscopy was performed on the Agilent Cary 60. The photoluminescence spectra were measured on Cary Eclipse Fluorescence Spectrofluorometer, Agilent Cary G9800AA. Cyclic voltammetry (CV) measurements were carried out on a CHI660E (CH Instruments, USA) in a three-electrode cell in an anhydrous dichloromethane (DCM) solution of tetrabutylammonium hexafluorophosphate (n-Bu4NPF6, 0.1 M) with a scan rate of 100 mV/s at room temperature. All potentials were further calibrated against ferrocene/ferrocenium (Fc/Fc+).