Rofo 2024; 196(03): 273-282
DOI: 10.1055/a-2175-4165
Vessels

Quantitative 4D flow MRI-derived thoracic aortic normal values of 2D flow MRI parameters in healthy volunteers

Quantitative 4D-Fluss-MRT-generierte Normwerte für die thorakale Aorta von 2D-Fluss-MRT-Parametern in gesunden Probanden
1   Diagnostic and Interventional Radiology, Leipzig University, Leipzig, Germany
,
Alexander Kühn
2   Diagnostic and Interventional Radiology, Leipzig Heart Centre University Hospital, Leipzig, Germany
,
Benjamin Köhler
3   Simulation and Graphics, Otto von Guericke Universität Magdeburg, Germany
,
Benjamin Behrendt
3   Simulation and Graphics, Otto von Guericke Universität Magdeburg, Germany
,
Boris Riekena
2   Diagnostic and Interventional Radiology, Leipzig Heart Centre University Hospital, Leipzig, Germany
,
Bernhard Preim
3   Simulation and Graphics, Otto von Guericke Universität Magdeburg, Germany
,
Timm Denecke
1   Diagnostic and Interventional Radiology, Leipzig University, Leipzig, Germany
,
Matthias Grothoff
2   Diagnostic and Interventional Radiology, Leipzig Heart Centre University Hospital, Leipzig, Germany
,
2   Diagnostic and Interventional Radiology, Leipzig Heart Centre University Hospital, Leipzig, Germany
› Author Affiliations
Supported by: Deutsche Forschungsgemeinschaft GR 4617/2–1 AOBJ 629 069

Abstract

Purpose To utilize 4 D flow MRI to acquire normal values of “conventional 2 D flow MRI parameters” in healthy volunteers in order to replace multiple single 2 D flow measurements with a single 4 D flow acquisition.

Materials and Methods A kt-GRAPPA accelerated 4 D flow sequence was used. Flow volumes were assessed by forward (FFV), backward (BFV), and net flow volumes (NFV) [ml/heartbeat] and flow velocities by axial (VAX) and absolute velocity (VABS) [m/s] in 116 volunteers (58 females, 43 ± 13 years). The aortic regurgitant fraction (RF) was calculated.

Results The sex-neutral mean FFV, BFV, NFV, and RF in the ascending aorta were 93.5 ± 14.8, 3.6 ± 2.8, 89.9 ± 0.6 ml/heartbeat, and 3.9 ± 2.9 %, respectively. Significantly higher values were seen in males regarding FFV, BFV, NFV and RF, but there was no sex dependency regarding VAX and VABS. The mean maximum VAX was lower (1.01 ± 0.31 m/s) than VABS (1.23 ± 0.35 m/s). We were able to determine normal ranges for all intended parameters.

Conclusion This study provides quantitative 4 D flow-derived thoracic aortic normal values of 2 D flow parameters in healthy volunteers. FFV, BFV, NFV, and VAX did not differ significantly from single 2 D flow acquisitions and could therefore replace time-consuming multiple single 2 D flow acquisitions. VABS should not be used interchangeably.

Key points:

  • 4 D flow MRI can be used to replace 2 D flow MRI measurements.

  • The parameter absolute velocities can be assessed by 4 D flow MRI.

  • There are sex-dependent differences regarding forward, backward, net aortic blood flow and the aortic valve regurgitant fraction.

Zusammenfassung

Ziel Nutzung des 4 D Flusses zur Normwertgenerierung „konventioneller“ 2D-Flussparameter in gesunden Probanden, um multiple 2D-Flussmessungen durch eine einzige 4D-Flussmessung zu ersetzen.

Materialien und Methoden Es wurde eine kt-GRAPPA-beschleunigte 4D-Fluss-Sequenz verwendet. Bei 116 Probanden (58 Frauen, 43 ± 13 Jahre) wurden die Flussvolumina als Vorwärts- (FFV), Rückwärts- (BFV) und Nettoflussvolumina (NFV) [ml/Herzschlag] und die Flussgeschwindigkeiten als axiale (VAX) und absolute Geschwindigkeiten (VABS) [m/s] erfasst. Die aortale Regurgitationsfraktion (RF) wurde berechnet.

Ergebnisse Die geschlechtsneutralen mittleren FFV, BFV, NFV und RF in der Aorta ascendens betrugen 93,5 ± 14,8, 3,6 ± 2,8, 89,9 ± 0,6 ml/Herzschlag bzw. 3,9 ± 2,9 %. Die Werte für FFV, BFV, NFV und RF waren bei Männern signifikant höher, während bei VAX und VABS keine Geschlechtsabhängigkeit bestand. Die mittlere VAX war niedriger (1,01 ± 0,31 m/s) als VABS (1,23 ± 0,35 m/s). Für alle vorgesehenen Parameter konnten Normwerte berechnet werden.

Schlussfolgerung Diese Studie liefert quantitative, aus dem 4D-Fluss abgeleitete Normwerte für 2D-Flussparameter in der thorakalen Aorta bei gesunden Probanden. FFV, BFV, NFV und VAX unterschieden sich nicht signifikant von 2D-Flussmessungen und könnten daher zeitaufwändige einzelne 2D-Flussmessungen ersetzen. VABS kann nicht austauschbar verwendet werden.

Kernaussagen:

  • 4D-MRT-Flussmesssungen können genutzt werden, um 2D-MRT-Flussmessungen zu ersetzen.

  • Der Parameter Absolute Flussgeschwindigkeit kann mittels 4D-Fluss-MRT erhoben werden.

  • Es gibt geschlechtsspezifische Unterschiede in Bezug auf Vorwärts-, Rückwärts- und Nettofluss der Aorta sowie die Aortenregurgitationsfraktion.

Zitierweise

  • Ebel S, Kühn A, Köhler B et al. Quantitative 4D flow MRI-derived thoracic aortic normal values of 2D flow MRI parameters in healthy volunteers . Fortschr Röntgenstr 2024; 196: 273 – 282



Publication History

Received: 04 April 2023

Accepted: 08 August 2023

Article published online:
09 November 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bertelsen L, Svendsen JH, Køber L. et al. Flow measurement at the aortic root – impact of location of through-plane phase contrast velocity mapping. J Cardiovasc Magn Reson 2016; 18: 55
  • 2 Lotz J, Meier C, Leppert A. et al. Cardiovascular Flow Measurement with Phase-Contrast MR Imaging: Basic Facts and Implementation. RadioGraphics 2002; 22: 651-671
  • 3 van der Geest RJ, Garg P. Advanced Analysis Techniques for Intra-cardiac Flow Evaluation from 4D Flow MRI. Current Radiology Reports 2016; 4: 38
  • 4 Bollache E, Van Ooij P, Powell A. et al. MRI sequences for the evaluation of aortic hemodynamics. 2017; i: 1529-1541
  • 5 Stankovic Z, Allen BD, Garcia J. et al. 4D flow imaging with MRI. Cardiovasc Diagn Ther 2014; (04) 173-192
  • 6 Stankovic Z. Four-dimensional flow magnetic resonance imaging in cirrhosis. World Journal of Gastroenterology 2016; 22: 89-102
  • 7 Sieren MM, Berlin C, Oechtering TH. et al. Comparison of 4D Flow MRI to 2D Flow MRI in the pulmonary arteries in healthy volunteers and patients with pulmonary hypertension. PLoS ONE 2019; 14
  • 8 Ebel S, Hübner L, Köhler B. et al. Validation of two accelerated 4D flow MRI sequences at 3 T: a phantom study. European radiolgy experimental 2019; 3: 12
  • 9 Ebel S, Dufke J, Köhler B. et al. Comparison of two accelerated 4D-flow sequences for aortic flow quantification. Scientific Reports 2019; 9: 1-10
  • 10 Köhler B, Grothoff M, Gutberlet M. et al. Bloodline: A system for the guided analysis of cardiac 4D PC-MRI data. Computers & Graphics 2019; 82: 32-43
  • 11 Bock J, Kreher BW, Hennig J. et al. Optimized pre-processing of time-resolved 2D and 3D Phase Contrast MRI data. Proceedings of the 15th Annual Meeting of ISMRM 2007; 15: 3138
  • 12 Dyverfeldt P, Bissell M, Barker AJ. et al. 4D flow cardiovascular magnetic resonance consensus statement. Journal of Cardiovascular Magnetic Resonance 2015; 17: 72
  • 13 Ebel S, Josefin D, Köhler B. et al. Automated Quantitative Extraction and Analysis of 4D flow Patterns in the Ascending Aorta: An intraindividual comparison at 1.5 T and 3 T. Scientific Reports 2020; 1-13
  • 14 Bock J, Töger J, Bidhult S. et al. Validation and reproducibility of cardiovascular 4D-flow MRI from two vendors using 2 × 2 parallel imaging acceleration in pulsatile flow phantom and in vivo with and without respiratory gating. Acta Radiol 2019; 60: 327-337
  • 15 Punzo B, Ranieri B, Tramontano L. et al. 4D-Flow Cardiovascular Magnetic Resonance Sequence for Aortic Assessment: Multi-Vendor and Multi-Magnetic Field Reproducibility in Healthy Volunteers. J Clin Med 2023; 12: 2960
  • 16 Zaman A, Motwani M, Oliver JJ. et al. 3.0T, time-resolved, 3D flow-sensitive MR in the thoracic aorta: Impact of k-t BLAST acceleration using 8- versus 32-channel coil arrays. Journal of Magnetic Resonance Imaging 2015; 42: 495-504
  • 17 Wentland AL, Grist TM, Wieben O. Repeatability and Internal Consistency of Abdominal 2D and 4D Phase Contrast MR Flow Measurements. Acad Radiol 2013; 20: 699-704
  • 18 Hälvä R, Vaara SM, Peltonen JI. et al. Peak flow measurements in patients with severe aortic stenosis: a prospective comparative study between cardiovascular magnetic resonance 2D and 4D flow and transthoracic echocardiography. J Cardiovasc Magn Reson 2021; 23: 132
  • 19 Hautanen S, Kiljander T, Korpela T. et al. 4D Flow Versus 2D Phase Contrast MRI in Populations With Bi- and Tricuspid Aortic Valves. In Vivo 2023; 37: 88-98
  • 20 Polacin M, Geiger J, Burkhardt B. et al. Quantitative evaluation of aortic valve regurgitation in 4D flow cardiac magnetic resonance: at which level should we measure?. BMC Med Imaging 2022; 22: 169
  • 21 Soulat G, Alattar Y, Ladouceur M. et al. Discordance between 2D and 4D flow in the assessment of pulmonary regurgitation severity: a right ventricular remodeling follow-up study. Eur Radiol 2023;
  • 22 Varga-Szemes A, Halfmann M, Schoepf UJ. et al. Highly Accelerated Compressed-Sensing 4D Flow for Intracardiac Flow Assessment. J Magn Reson Imaging 2022;
  • 23 Kroeger JR, Pavesio FC, Mörsdorf R. et al. Velocity quantification in 44 healthy volunteers using accelerated multi-VENC 4D flow CMR. European Journal of Radiology 2021; 137: 109570
  • 24 Schafstedde M, Jarmatz L, Brüning J. et al. Population-based reference values for 4D flow MRI derived aortic blood flow parameters. Physiol Meas 2023; 44
  • 25 Otto CM, Nishimura RA, Bonow RO. et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021; 143: e72-e227
  • 26 Okura H, Takada Y, Yamabe A. et al. Prevalence and Correlates of Physiological Valvular Regurgitation in Healthy Subjects. Circulation Journal advpub 2011; 1108291388-1108291388
  • 27 Detaint D, Messika-Zeitoun D, Maalouf J. et al. Quantitative echocardiographic determinants of clinical outcome in asymptomatic patients with aortic regurgitation: a prospective study. JACC Cardiovasc Imaging 2008; 1: 1-11
  • 28 Valvular Heart Disease. https://www.ahajournals.org/doi/epub/10.1161/CIRCULATIONAHA.104.488825 . Accessed 29 Mar 2022
  • 29 Zaman A, Motwani M, Oliver JJ. et al. 3.0T, time-resolved, 3D flow-sensitive MR in the thoracic aorta: Impact of k-t BLAST acceleration using 8- versus 32-channel coil arrays. Journal of Magnetic Resonance Imaging 2015; 42: 495-504
  • 30 Wu C, Honarmand AR, Schnell S. et al. Age‐Related Changes of Normal Cerebral and Cardiac Blood Flow in Children and Adults Aged 7 Months to 61 Years. JAHA 2016; 5: e002657
  • 31 Bollache E, van Ooij P, Powell A. et al. Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics. Int J Cardiovasc Imaging 2016; 32: 1529-1541
  • 32 Tan Z, Roeloffs V, Voit D. et al. Model-based reconstruction for real-time phase-contrast flow MRI: Improved spatiotemporal accuracy. Magnetic Resonance in Medicine 2017; 77: 1082-1093
  • 33 Petersson S, Dyverfeldt P, Sigfridsson A. et al. Quantification of turbulence and velocity in stenotic flow using spiral three-dimensional phase-contrast MRI. Magnetic Resonance in Medicine 2016; 75: 1249-1255
  • 34 Urbina J, Sotelo JA, Springmüller D. et al. Realistic aortic phantom to study hemodynamics using MRI and cardiac catheterization in normal and aortic coarctation conditions. Journal of Magnetic Resonance Imaging 2016; 44: 683-697
  • 35 Schnell S, Markl M, Entezari P. et al. k-t GRAPPA accelerated four-dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress. Magn Reson Med 2014; 72: 522-533
  • 36 Varga-Szemes A, Halfmann M, Schoepf UJ. et al. Highly Accelerated Compressed-Sensing 4D Flow for Intracardiac Flow Assessment. Journal of Magnetic Resonance Imaging 56: 1053-1907