Subscribe to RSS
DOI: 10.1055/a-2176-7862
Kognitive Dysfunktion nach Schlaganfall
Stroke-Related Cognitive Dysfunction
Zusammenfassung
Eine kognitive Dysfunktion nach Schlaganfall besteht häufig und korreliert mit der Lokalisation und dem Ausmaß des Schlaganfalls sowie mit dem Zeitpunkt der Erhebung, die anhand standardisierter und etablierter Testverfahren erfolgen sollte. Eine kognitive Dysfunktion nach Schlaganfall ist im Kontext einer so genannten post-stroke dementia für das funktionelle Outcome relevant. Zudem ist das Bestehen einer kognitiven Dysfunktion mit einer erhöhten Wahrscheinlichkeit für ein Schlaganfallrezidiv assoziiert. Kognitive Defizite als mögliche Folge eines Schlaganfalls sollte daher auch abseits von Komplex- und Rehabilitationsbehandlungen Beachtung finden, zumal in Deutschland bis dato kein ambulantes Nachsorgekonzept nach stattgehabtem Schlaganfall etabliert wurde. Nicht nur zerebrovaskuläre Ereignisse selbst, sondern auch das Bestehen vaskulärer Risikofaktoren wie Herzinsuffizienz, Vorhofflimmern, Hypercholesterinämie und Niereninsuffizienz können zur Entwicklung einer kognitiven Funktionsstörung beitragen und eine kognitive Dysfunktion nach Schlaganfall verstärken. Die bestmögliche Therapie bekannter vaskulärer Risikofaktoren und eine gesunde Lebensweise sind im Kontext bis dato fehlender spezifischer medikamentöser Therapien einer kognitiven Dysfunktion nach Schlaganfall angezeigt. Eine gezielte Rehabilitation kann zur Erhaltung und Verbesserung kognitiver Funktionen bei kognitiver Dysfunktion nach Schlaganfall beitragen. Prospektive (randomisierte) Schlaganfallstudien sollten eine standardisierte Erfassung kognitiver Endpunkte einschließen und bestenfalls auf die Entwicklung präventiver Therapiestrategien für die kognitive Dysfunktion abzielen.
Abstract
Cognitive dysfunction after stroke is a common clinical finding and correlates with stroke localization and severity of stroke, as well as the timing of the cognitive assessment, which should be performed using standardized and established testing procedures. Cognitive dysfunction after stroke is relevant to functional outcome in the context of so-called post-stroke dementia. Importantly, the presence of cognitive dysfuntion is associated with an increased likelihood of recurrent stroke. Therefore, cognitive deficits as a possible consequence of stroke should necessarily get attention also beyond acute stroke care and early rehabilitation, particularly, as there is no stroke aftercare concept established in Germany to date. Not only cerebrovascular events themselves, but also the presence of corresponding vascular risk factors (e. g. atrial fibrillation, heart failure, hypercholesterolemia, and renal insufficiency) may contribute to the development and exacerbation of cognitive dysfunction after stroke. As long as a specific medical treatment approach for post-stroke cognitive dysfunction is not available, optimized treatment of risk factors and a healthy lifestyle have to be recommended. In addition, targeted rehabilitation after stroke may support improvement of cognitive function. Prospective (randomized) stroke trials should implement a standardized assessment of cognitive endpoints, and ideally focus on preventive therapeutic strategies for post-stroke cognitive dysfunction.
Schlüsselwörter
Vaskuläre Demenz - Magnetresonanztomographie - Neuropsychologische Testung - Mikroangiopathie - post stroke dementiaKey words
vascular dementia - magnetic resonance imaging - cognitive assessment - white matter lesions - post stroke dementiaPublication History
Received: 12 June 2023
Accepted: 14 September 2023
Article published online:
19 October 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
Literatur
- 1 Stahmeyer JT, Stubenrauch S, Geyer S. et al. The Frequency and Timing of Recurrent Stroke. An analysis of routine health insurance data. Dtsch Arztebl Int 2019; 116: 711-7
- 2 Tziaka E, Christidi F, Tsiptsios D. et al. Leukoaraiosis as a Predictor of Depression and Cognitive Impairment among Stroke Survivors: A Systematic Review. Neurol Int 2023; 15: 238-272
- 3 Jeffares I, Rohde D, Doyle F. et al. The impact of stroke, cognitive function and post-stroke cognitive impairment (PSCI) on healthcare utilisation in Ireland: a cross-sectional nationally representative study. BMC Health Serv Res 2022; 22: 414
- 4 Rost NS, Brodtmann A, Pase MP. et al. Post-Stroke Cognitive Impairment and Dementia. Circ Res 2022; 130: 1252-1271
- 5 Rundek T, Tolea M, Ariko T. et al. Vascular cognitive impairment. Neurotherapeutics 2022; 19: 68-88
- 6 Rivard L, Friberg L, Conen D. et al. Atrial Fibrillation and Dementia: A Report From the AF-SCREEN International Collaboration. Circulation 2022; 145: 392-409
- 7 Quinn TJ, Richard E, Teuschl Y. et al. European Stroke Organisation and European Academy of Neurology joint guidelines on post-stroke cognitive impairment. Eur J Neurol 2021; 28: 3883-3920
- 8 Skrobot OA, Black SE, Chen C. et al. Progress toward standardized diagnosis of vascular cognitive impairment: Guidelines from the Vascular Impairment of Cognition Classification Consensus Study. Alzheimers Dement 2018; 14: 280-292
- 9 Dietzel J, Haeusler KG, Endres M. Does atrial fibrillation cause cognitive decline and dementia?. Europace 2018; 20: 408-419
- 10 Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol 2009; 8: 1006-1018
- 11 Levine DA, Wadley VG, Lange KM. et al. Risk Factors for Poststroke Cognitive Decline: The REGARDS Study (Reasons for Geographic and Racial Differences in Stroke). Stroke 2018; 49: 987-994
- 12 Chabriat H, Vahedi K, Iba-Zizen MT. et al. Clinical spectrum of CADASIL: a study of 7 families. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Lancet 1995; 346: 934-939
- 13 Gallina P, Nicoletti C, Scollato A. et al. The “Glymphatic-Lymphatic System Pathology” and a New Categorization of Neurodegenerative Disorders. Front Neurosci 2021; 15: 669681
- 14 Duncombe J, Kitamura A, Hase Y. et al. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond) 2017; 131: 2451-2468
- 15 Boyle PA, Nag S, Leurgans S. et al. Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology 2015; 85: 1930-1936
- 16 Zhao L, Biesbroeck JM, Shi L. et al. Strategic infarct location for post-stroke cognitive impairment: A multivariate lesion-symptom mapping study. J Cereb Blood Flow Metab 2018; 38: 1299-1311
- 17 Munsch F, Sagnier S, Asselineau J. et al. Stroke location is an independent predictor of cognitive outcome. Stroke 2016; 47: 66-73
- 18 Wen W, Sachdev PS, Li JJ. et al. White matter hyperintensities in the forties: their prevalence and topography in an epidemiological sample aged 44-48. Hum Brain Mapp 2009; 30: 1155-1167
- 19 Vermeer SE, Longstreth WT, Koudstaal PJ. et al. Silent brain infarcts: a systematic review. Lancet Neurol 2007; 6: 611-619
- 20 Allan LM, Rowan EN, Firbank MJ. et al. Long term incidence of dementia, predictors of mortality and pathological diagnosis in older stroke survivors. Brain 2011; 134: 3716-3727
- 21 Häusler KG, Laufs U, Endres M. Neurological aspects of chronic heart failure. Nervenarzt 2011; 82: 7 33-742
- 22 Frey A, Homola GA, Henneges C. et al. Temporal changes in total and hippocampal brain volume and cognitive function in patients with chronic heart failure-the COGNITION.MATTERS-HF cohort study. Eur Heart J 2021; 42: 1569-1578
- 23 Jiao Y, Tian T, Wei S. et al. Association between serum non-high-density lipoprotein cholesterol and cognitive dysfunction after acute ischemic stroke: a cross-sectional study. Braz J Med Biol Res 2020; 53: e9487
- 24 Paraskevas KI, Mikhailidis DP, Spinelli F. et al. Asymptomatic carotid stenosis and cognitive impairment. J Cardiovasc Surg (Torino) 2023; 64: 167-173
- 25 Miglinas M, Cesniene U, Janusaite MM. et al. Cerebrovascular Disease and Cognition in Chronic Kidney Disease Patients. Front Cardiovasc Med 2020; 7: 96
- 26 Jokinen H, Gouw AA, Madureira S. et al. Incident lacunes influence cognitive decline: the LADIS study. Neurology 2011; 76: 1872-1878
- 27 Mendez MF, Padilla CR. Delirium. In: Daroff RB, Jankovic J, Mazziotta JC et al. Bradley’s Neurology in clinical practice. London, New York, Oxford, Philadelphia, St Louis, Sydney, Toronto: Elsevier; 2016: 23-33
- 28 Quinn TJ, Elliott E, Langhorne P. Cognitive and Mood Assessment Tools for Use in Stroke. Stroke 2018; 49: 483-490
- 29 Ball EL, Shah M, Ross E. et al Predictors of post-stroke cognitive impairment using acute structural MRI neuroimaging: A systematic review and meta-analysis. Int J Stroke 2023; 18: 543-554 Epub 2022 Sep 12
- 30 Weaver NA, Kuijf HJ, Aben HP. et al. Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts. Lancet Neurol 2021; 20: 448-459
- 31 Georgakis MK, Fang R, Düring M. et al. Cerebral small vessel disease burden and cognitive and functional outcomes after stroke: A multicenter prospective cohort study. Alzheimers Dement 2023; 19: 1152-1163
- 32 Ding MY, Xu Y, Wang YZ. et al. Predictors of Cognitive Impairment After Stroke: A Prospective Stroke Cohort Study. J Alzheimers Dis 2019; 71: 1139-1151
- 33 Broersen LHA, Siegerink B, Sperber PS. et al. High-Sensitivity Cardiac Troponin T and Cognitive Function in Patients With Ischemic Stroke. Stroke 2020; 51: 1604-1607
- 34 Rohde D, Merriman NA, Doyle F. et al. Does cognitive impairment impact adherence? A systematic review and meta-analysis of the association between cognitive impairment and medication non-adherence in stroke. PLoS One 2017; 12: e0189339
- 35 Shah SJ, Fang MC, Jeon SY. et al. Geriatric Syndromes and Atrial Fibrillation: Prevalence and Association with Anticoagulant Use in a National Cohort of Older Americans. J Am Geriatr Soc 2021; 69: 349-356
- 36 Lee ML, Saver JL, Hong KS. et al. Cognitive impairment and risk of future stroke: a systematic review and meta-analysis. CMAJ 2014; 186: E536-546
- 37 Kwan A, Wie J, Dowling NM. et al. Cognitive Impairment after Lacunar Stroke and the Risk of Recurrent Stroke and Death. Cerebrovasc Dis 2021; 50: 383-389
- 38 PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack. Lancet 2001; 358: 1033-1041
- 39 Norling AM, Marshall RS, Pavol MA. et al. Is Hemispheric Hypoperfusion a Treatable Cause of Cognitive Impairment?. Curr Cardiol Rep 2019; 21: 4
- 40 Rosenbaum-Halevi D, Bursaw AW, Karamchandani RR. et al. Cognitive deficits in acute mild ischemic stroke and TIA and effects of rt-PA. Ann Clin Transl Neurol 2019; 6: 466-474
- 41 Diener HC, Sacco RL, Yusuf S. et al. Effects of aspirin plus extended-release dipyridamole versus clopidogrel and telmisartan on disability and cognitive function after recurrent stroke in patients with ischaemic stroke in the Prevention Regimen for Effectively Avoiding Second Strokes (PRoFESS) trial: a double-blind, active and placebo-controlled study. Lancet Neurol 2008; 7: 875-84
- 42 Bosch JJ, O'Donnell MJ, Gao P. et al. Effects of a Polypill, Aspirin, and the Combination of Both on Cognitive and Functional Outcomes: A Randomized Clinical Trial. JAMA Neurol 2023; 80: 251-259
- 43 Li X, Jia Z, Yan Y. Ticagrelor for prevention of stroke and cognitive impairment in patients with vascular high-risk factors: A meta-analysis of randomized controlled trials. Int J Cardiol 2022; 353: 96-102
- 44 Gorelick PB, Furie KL, Iadecola C. et al. Defining Optimal Brain Health in Adults: A Presidential Advisory from the American Heart Association/American Stroke Association. Stroke 2017; 48: e284-e303
- 45 Kavirajan H, Schneider LS. Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol 2007; 6: 782-792
- 46 Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften. S3-Leitlinie Demenzen (Aktualisierung 2016). Im Internet: 038013_LL_Demenzen_2016_archiviert_1668592571538.pdf (dnvp9c1uo2095.cloudfront.net); Stand: 29.07.2023
- 47 Farokhi-Sisakht F, Farhoudi M, Sadigh-Eteghad A. et al. Cognitive Rehabilitation Improves Ischemic Stroke-Induced Cognitive Impairment: Role of Growth Factors. J Stroke Cerebrovasc Dis 2019; 28: 104299
- 48 Rost NS, Meschia JF, Gottesman R. et al. Cognitive Impairment and Dementia after Stroke: Design and Rationale for the DISCOVERY Study. Stroke 2021; 52: e499-e516