Subscribe to RSS
DOI: 10.1055/a-2177-4998
Theoretical Accuracy of the Raytracing Method for Intraocular Calculation of Lens Power in Myopic Eyes after Small Incision Extraction of the Lenticule
Theoretische Genauigkeit der Raytracing-Methode zur intraokularen Berechnung der Linsenstärke bei myopen Augen nach einer Small Incision Lenticule Extraction The study was funded by Tianjin Key Medical Discipline Construction Project (No. TJYXZDXK-016A).Abstract
Aim To evaluate the accuracy of the raytracing method for the calculation of intraocular lens (IOL) power in myopic eyes after small incision extraction of the lenticule (SMILE).
Methods Retrospective study. All patients undergoing surgery for myopic SMILE between May 1, 2020, and December 31, 2020, with Scheimpflug tomography optical biometry were eligible for inclusion. Manifest refraction was performed before and 6 months after refractive surgery. One eye from each patient was included in the final analysis. A theoretical model was invited to predict the accuracy of multiple methods of lens power calculation by comparing the IOL-induced refractive error at the corneal plane (IOL-Dif) and the SMILE-induced change of spherical equivalent (SMILE-Dif) before and after SMILE surgery. The prediction error (PE) was calculated as the difference between SMILE-Dif–IOL-Dif. IOL power calculations were performed using raytracing (Olsen Raytracing, Pentacam AXL, software version 1.22r05, Wetzlar, Germany) and other formulae with historical data (Barrett True-K, Double-K SRK/T, Masket, Modified Masket) and without historical data (Barrett True-K no history, Haigis-L, Hill Potvin Shammas PM, Shammas-PL) for the same IOL power and model. In addition, subgroup analysis was performed in different anterior chamber depths, axial lengths, back-to-front corneal radius ratio, keratometry, lens thickness, and preoperative spherical equivalents.
Results A total of 70 eyes of 70 patients were analyzed. The raytracing method had the smallest mean absolute PE (0.26 ± 0.24 D) and median absolute PE (0.16 D), and also had the largest percentage of eyes within a PE of ± 0.25 D (64.3%), ± 0.50 D (81.4%), ± 0.75 D (95.7%), and ± 1.00 D (100.0%). The raytracing method was significantly better than Double-K SRK/T, Haigis, Haigis-L, and Shammas-PL formulae in postoperative refraction prediction (all p < 0.001), but not better than the following formulae: Barrett True-K (p = 0.314), Barrett True-K no history (p = 0.163), Masket (p = 1.0), Modified Masket (p = 0.806), and Hill Potvin Shammas PM (p = 0.286). Subgroup analysis showed that refractive outcomes exhibited no statistically significant differences in the raytracing method (all p < 0.05).
Conclusion Raytracing was the most accurate method in predicting target refraction and had a good consistency in calculating IOL power for myopic eyes after SMILE.
Zusammenfassung
Ziel Das Ziel dieser Studie war es, die Genauigkeit der Raytracing-Methode zur Berechnung der Intraokularlinsenstärke (IOL-Stärke) bei myopen Augen nach der SMILE-Operation (Small Incision Lenticule Extraction) zu bewerten.
Methoden Es handelt sich um eine retrospektive Studie. Alle Patienten, die sich zwischen dem 1. Mai 2020 und dem 31. Dezember 2020 einer SMILE-Operation aufgrund von Myopie unterzogen haben und bei denen eine Scheimpflug-Tomografie-Optikbiometrie durchgeführt wurde, waren für die Studie geeignet. Eine Manifestrefraktion wurde vor und 6 Monate nach der refraktiven Chirurgie durchgeführt. Ein Auge jedes Patienten wurde in die abschließende Analyse einbezogen. Ein theoretisches Modell wurde verwendet, um die Genauigkeit mehrerer Methoden zur Berechnung der Linsenstärke vorherzusagen, indem der IOL-induzierte Refraktionsfehler in der Hornhautebene (IOL-Dif) und die SMILE-induzierte Änderung des sphärischen Äquivalents (SMILE-Dif) vor und nach der SMILE-Operation verglichen wurden. Der Vorhersagefehler (PE) wurde als Differenz zwischen SMILE-Dif und IOL-Dif berechnet. Die IOL-Berechnungen wurden unter Verwendung von Raytracing (Olsen Raytracing, Pentacam AXL, Softwareversion 1.22r05, Wetzlar, Deutschland) und anderen Formeln mit historischen Daten (Barrett True-K, Double-K SRK/T, Masket, Modified Masket) sowie ohne historische Daten (Barrett True-K ohne Historie, Haigis-L, Hill Potvin Shammas PM, Shammas-PL) für dieselbe IOL-Stärke und dasselbe Modell durchgeführt. Darüber hinaus wurde eine Untergruppenanalyse in Bezug auf verschiedene Vorderkammertiefen, Achslängen, Verhältnis von Rück- zu Vorderkornealradius, Keratometrie, Linsendicke und präoperative sphärische Äquivalente durchgeführt.
Ergebnisse Insgesamt wurden 70 Augen von 70 Patienten analysiert. Die Raytracing-Methode hatte den kleinsten durchschnittlichen absoluten PE (0,26 ± 0,24 dpt) und den medianen absoluten PE (0,16 dpt) und hatte auch den größten Anteil an Augen mit einem PE von ± 0,25 dpt (64,3%), ± 0,50 dpt (81,4%), ± 0,75 dpt (95,7%) und ± 1,00 dpt (100,0%). Die Raytracing-Methode war signifikant besser als die Formeln Double-K SRK/T, Haigis, Haigis-L und Shammas-PL in der Vorhersage der postoperativen Refraktion (alle p < 0,001), aber nicht besser als die folgenden Formeln: Barrett True-K (p = 0,314), Barrett True-K ohne Historie (p = 0,163), Masket (p = 1,0), Modified Masket (p = 0,806) und Hill Potvin Shammas PM (p = 0,286). Die Untergruppenanalyse zeigte, dass die refraktiven Ergebnisse in der Raytracing-Methode keine statistisch signifikanten Unterschiede aufwiesen (alle p < 0,05).
Schlussfolgerung Raytracing war die genaueste Methode zur Vorhersage der Zielrefraktion und zeigte eine gute Konsistenz bei der Berechnung der IOL-Stärke für myope Augen nach SMILE.
Supporting Information
- Supporting Information
The IOL-Dif and SMILE-Dif of different formulae are presented in the Supplementary Table 1.
Publication History
Received: 31 December 2022
Accepted: 07 September 2023
Accepted Manuscript online:
18 September 2023
Article published online:
23 November 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Hoffer KJ. Intraocular lens power calculation after previous laser refractive surgery. J Cataract Refract Surg 2009; 35: 759-765 DOI: 10.1016/j.jcrs.2009.01.005.
- 2 Langenbucher A, Haigis W, Seitz B. Difficult lens power calculations. Curr Opin Ophthalmol 2004; 15: 1-9 DOI: 10.1097/00055735-200402000-00002.
- 3 Savini G, Hoffer KJ. Intraocular lens power calculation in eyes with previous corneal refractive surgery. Eye Vis (Lond) 2018; 5: 18 DOI: 10.1186/s40662-018-0110-5.
- 4 Kang BS, Han JM, Oh JY. et al. Intraocular Lens Power Calculation after Refractive Surgery: A Comparative Analysis of Accuracy and Predictability. Korean J Ophthalmol 2017; 31: 479-488 DOI: 10.3341/kjo.2016.0078.
- 5 Abulafia A, Hill WE, Koch DD. et al. Accuracy of the Barrett True-K formula for intraocular lens power prediction after laser in situ keratomileusis or photorefractive keratectomy for myopia. J Cataract Refract Surg 2016; 42: 363-369 DOI: 10.1016/j.jcrs.2015.11.039.
- 6 Masket S, Masket SE. Simple regression formula for intraocular lens power adjustment in eyes requiring cataract surgery after excimer laser photoablation. J Cataract Refract Surg 2006; 32: 430-434 DOI: 10.1016/j.jcrs.2005.12.106.
- 7 Aramberri J. Intraocular lens power calculation after corneal refractive surgery: double-K method. J Cataract Refract Surg 2003; 29: 2063-2068 DOI: 10.1016/s0886-3350(03)00957-x.
- 8 Savini G, Barboni P, Zanini M. Intraocular lens power calculation after myopic refractive surgery: theoretical comparison of different methods. Ophthalmology 2006; 113: 1271-1282 DOI: 10.1016/j.ophtha.2006.03.024.
- 9 Hoffer KJ. Intraocular lens power calculation for eyes after refractive keratotomy. J Refract Surg 1995; 11: 490-493 DOI: 10.3928/1081-597X-19951101-17.
- 10 Tang M, Wang L, Koch DD. et al. Intraocular lens power calculation after previous myopic laser vision correction based on corneal power measured by Fourier-domain optical coherence tomography. J Cataract Refract Surg 2012; 38: 589-594 DOI: 10.1016/j.jcrs.2011.11.025.
- 11 Ianchulev T, Hoffer KJ, Yoo SH. et al. Intraoperative refractive biometry for predicting intraocular lens power calculation after prior myopic refractive surgery. Ophthalmology 2014; 121: 56-60 DOI: 10.1016/j.ophtha.2013.08.041.
- 12 Potvin R, Hill W. New algorithm for intraocular lens power calculations after myopic laser in situ keratomileusis based on rotating Scheimpflug camera data. J Cataract Refract Surg 2015; 41: 339-347 DOI: 10.1016/j.jcrs.2014.05.040.
- 13 Haigis W. Intraocular lens calculation after refractive surgery for myopia: Haigis-L formula. J Cataract Refract Surg 2008; 34: 1658-1663 DOI: 10.1016/j.jcrs.2008.06.029.
- 14 Shammas HJ, Shammas MC. No-history method of intraocular lens power calculation for cataract surgery after myopic laser in situ keratomileusis. J Cataract Refract Surg 2007; 33: 31-36 DOI: 10.1016/j.jcrs.2006.08.045.
- 15 Melles RB, Holladay JT, Chang WJ. Accuracy of Intraocular Lens Calculation Formulas. Ophthalmology 2018; 125: 169-178 DOI: 10.1016/j.ophtha.2017.08.027.
- 16 Wang L, Tang M, Huang D. et al. Comparison of Newer Intraocular Lens Power Calculation Methods for Eyes after Corneal Refractive Surgery. Ophthalmology 2015; 122: 2443-2449 DOI: 10.1016/j.ophtha.2015.08.037.
- 17 Fram NR, Masket S, Wang L. Comparison of Intraoperative Aberrometry, OCT-Based IOL Formula, Haigis-L, and Masket Formulae for IOL Power Calculation after Laser Vision Correction. Ophthalmology 2015; 122: 1096-1101 DOI: 10.1016/j.ophtha.2015.01.027.
- 18 Savini G, Bedei A, Barboni P. et al. Intraocular lens power calculation by ray-tracing after myopic excimer laser surgery. Am J Ophthalmol 2014; 157: 150-153.e1 DOI: 10.1016/j.ajo.2013.08.006.
- 19 Saiki M, Negishi K, Kato N. et al. Ray tracing software for intraocular lens power calculation after corneal excimer laser surgery. Jpn J Ophthalmol 2014; 58: 276-281 DOI: 10.1007/s10384-014-0304-x.
- 20 Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg 1990; 16: 333-340 DOI: 10.1016/s0886-3350(13)80705-5.
- 21 Olsen T, Hoffmann P. C constant: new concept for ray tracing-assisted intraocular lens power calculation. J Cataract Refract Surg 2014; 40: 764-773 DOI: 10.1016/j.jcrs.2013.10.037.
- 22 Minami K, Kataoka Y, Matsunaga J. et al. Ray-tracing intraocular lens power calculation using anterior segment optical coherence tomography measurements. J Cataract Refract Surg 2012; 38: 1758-1763 DOI: 10.1016/j.jcrs.2012.05.035.
- 23 Rabsilber TM, Reuland AJ, Holzer MP. et al. Intraocular lens power calculation using ray tracing following excimer laser surgery. Eye (Lond) 2007; 21: 697-701 DOI: 10.1038/sj.eye.6702300.
- 24 Lazaridis A, Schraml F, Preussner PR. et al. Predictability of intraocular lens power calculation after small-incision lenticule extraction for myopia. J Cataract Refract Surg 2021; 47: 304-310 DOI: 10.1097/j.jcrs.0000000000000405.
- 25 Hoffer KJ, Aramberri J, Haigis W. et al. Protocols for studies of intraocular lens formula accuracy. Am J Ophthalmol 2015; 160: 403-405.e1 DOI: 10.1016/j.ajo.2015.05.029.
- 26 Ahmed AA, Hatch KM. Advantages of Small Incision Lenticule Extraction (SMILE) for Mass Eye and Ear Special Issue. Semin Ophthalmol 2020; 35: 224-231 DOI: 10.1080/08820538.2020.1807028.
- 27 Savini G, Calossi A, Camellin M. et al. Corneal ray tracing versus simulated keratometry for estimating corneal power changes after excimer laser surgery. J Cataract Refract Surg 2014; 40: 1109-1115 DOI: 10.1016/j.jcrs.2013.11.032.
- 28 Leite de Pinho Tavares R, de Almeida Ferreira G, Ghanem VC. et al. IOL Power Calculation After Radial Keratotomy Using the Haigis and Barrett True-K Formulas. J Refract Surg 2020; 36: 832-837 DOI: 10.3928/1081597X-20200930-02.
- 29 Christopher KL, Patnaik JL, Miller DC. et al. Accuracy of Intraoperative Aberrometry, Barrett True-K With and Without Posterior Cornea Measurements, Shammas-PL, and Haigis-L Formulas After Myopic Refractive Surgery. J Refract Surg 2021; 37: 60-68 DOI: 10.3928/1081597X-20201030-02.
- 30 Li H, Nan L, Li J. et al. Accuracy of intraocular lens power calculation formulae after laser refractive surgery in myopic eyes: a meta-analysis. Eye Vis (Lond) 2020; 7: 37 DOI: 10.1186/s40662-020-00188-1.
- 31 Gonen T, Cosar CB, Sener B. et al. Comparison of keratometric data obtained by automated keratometer, Dicon CT 200, Allegro Topolyzer, and Pentacam. J Refract Surg 2012; 28: 557-561 DOI: 10.3928/1081597X-20120723-04.
- 32 Cho K, Lim DH, Yoo YS. et al. New method for intraocular lens power calculation using a rotating Scheimpflug camera in eyes with corneal refractive surgery. Sci Rep 2020; 10: 8992 DOI: 10.1038/s41598-020-65827-y.
- 33 Huang D, Tang M, Wang L. et al. Optical coherence tomography-based corneal power measurement and intraocular lens power calculation following laser vision correction (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 2013; 111: 34-45
- 34 Chang PJ, Zhang F, Wang JJ. et al. Accuracy of Constant C for Ray Tracing: Assisted Intraocular Lens Power Calculation in Normal Ocular Axial Eyes. Ophthalmic Res 2021; 64: 85-90 DOI: 10.1159/000507963.
- 35 Oh JH, Kim SH, Chuck RS. et al. Evaluation of the Pentacam ray tracing method for the measurement of central corneal power after myopic photorefractive keratectomy. Cornea 2014; 33: 261-265 DOI: 10.1097/ICO.0000000000000034.
- 36 Kim M, Eom Y, Lee H. et al. Use of the Posterior/Anterior Corneal Curvature Radii Ratio to Improve the Accuracy of Intraocular Lens Power Calculation: Eomʼs Adjustment Method. Invest Ophthalmol Vis Sci 2018; 59: 1016-1024 DOI: 10.1167/iovs.17-22405.
- 37 Ghoreyshi M, Khalilian A, Peyman M. et al. Comparison of OKULIX ray-tracing software with SRK-T and Hoffer-Q formula in intraocular lens power calculation. J Curr Ophthalmol 2018; 30: 63-67 DOI: 10.1016/j.joco.2017.06.008.
- 38 Olsen T, Funding M. Ray-tracing analysis of intraocular lens power in situ . J Cataract Refract Surg 2012; 38: 641-647 DOI: 10.1016/j.jcrs.2011.10.035.
- 39 Canovas C, van der Mooren M, Rosen R. et al. Effect of the equivalent refractive index on intraocular lens power prediction with ray tracing after myopic laser in situ keratomileusis. J Cataract Refract Surg 2015; 41: 1030-1037 DOI: 10.1016/j.jcrs.2014.07.044.
- 40 Gjerdrum B, Gundersen KG, Lundmark PO. et al. Refractive Precision of Ray Tracing IOL Calculations Based on OCT Data versus Traditional IOL Calculation Formulas Based on Reflectometry in Patients with a History of Laser Vision Correction for Myopia. Clin Ophthalmol 2021; 15: 845-857 DOI: 10.2147/OPTH.S298007.
- 41 Lischke R, Sekundo W, Wiltfang R. et al. IOL Power Calculations and Cataract Surgery in Eyes with Previous Small Incision Lenticule Extraction. J Clin Med 2022; 11: 4418 DOI: 10.3390/jcm11154418.
- 42 Zhu W, Zhang FJ, Li Y. et al. Stability of the Barrett True-K formula for intraocular lens power calculation after SMILE in Chinese myopic eyes. Int J Ophthalmol 2020; 13: 560-566 DOI: 10.18240/ijo.2020.04.05.