Subscribe to RSS
DOI: 10.1055/a-2177-7974
Phantomschmerzen: gegenwärtige Behandlungsstrategien
Phantomschmerzen sind schmerzhafte Empfindungen in amputierten Körperteilen. Diese Schmerzen nehmen häufig einen chronischen Verlauf und betreffen bis zu 80% der Amputierten in unterschiedlicher Intensität, Auswirkung und Dauer. Klinisch relevant ist die Differenzierung von Phantomschmerzen und nicht-schmerzhaften Phantomempfindungen. Phantomschmerzen können intermittierend oder kontinuierlich auftreten, werden von bis zu 80% der Betroffenen mit hoher Schmerzintensität angegeben und schränken die Lebensqualität deutlich ein.
-
Phantomschmerzen beschreiben schmerzhafte Empfindungen in der amputierten Extremität, die sich in ihrer Intensität, Dauer, Qualität und Häufigkeit unterscheiden.
-
Abzugrenzen von Phantomschmerzen sind
-
nicht-schmerzhafte Phantomempfindungen;
-
Stumpfschmerzen, die am Stumpf selbst lokalisiert sind und sich in ihrer Pathogenese und Therapie vom Phantomschmerz unterscheiden.
-
-
Die Therapie von Phantomschmerzen besteht aus einem multimodalen Ansatz, aus medikamentösen und nicht-medikamentösen Verfahren sowie chirurgischen Interventionen.
-
Chirurgische Interventionen können zur Prävention von Phantom- und Neuromschmerzen beitragen. Phantom- und Neuromschmerzen lassen sich nachhaltig durch neue innovative chirurgische Verfahren wie Targeted Muscle Reinnervation (TMR) und Regenerative Peripheral Nerve Interfaces (RPNI) reduzieren.
-
Sensorisches Feedback führt zu einer Reduktion von Phantomschmerzen, einer erhöhten Prothesentoleranz und Embodiment.
Schlüsselwörter
Phantomschmerzen - Targeted Muscle Reinnervation - Targeted Sensory Reinnervation - Schmerztherapie - AmputationPublication History
Article published online:
05 June 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Limakatso K, Bedwell GJ, Madden VJ. et al. The prevalence and risk factors for phantom limb pain in people with amputations: A systematic review and meta-analysis. PLoS One 2020; 15: e0240431
- 2 Melzack R. Phantom limb pain. Patol Fiziol Eksp Ter 1992; (04) 52-54
- 3 Schone HR, Baker CI, Katz J. et al. Making sense of phantom limb pain. J Neurol Neurosurg Psychiatry 2022; 93: 833-843
- 4 Flor H. Phantom-limb pain: characteristics, causes, and treatment. Lancet Neurol 2002; 1: 182-189
- 5 Sherman RA, Sherman CJ, Bruno GM. Psychological factors influencing chronic phantom limb pain: An analysis of the literature. Pain 1987; 28: 285-295
- 6 Erlenwein J, Diers M, Ernst J. et al. Klinisches Update zu Phantomschmerz: Deutsche Fassung. Schmerz 2023; 37: 195-214
- 7 Hanyu-Deutmeyer AA, Cascella M, Varacallo M. Phantom Limb Pain. Treasure Island (FL): StatPearls Publishing; 2023
- 8 Black JA, Nikolajsen L, Kroner K. et al. Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann Neurol 2008; 64: 644-653
- 9 Scadding JW. Development of ongoing activity, mechanosensitivity, and adrenaline sensitivity in severed peripheral nerve axons. Exp Neurol 1981; 73: 345-364
- 10 Melzack R. Phantom limbs, the self and the brain (the D. O. Hebb Memorial Lecture). Can Psychol Psychol Can 1989; 30: 1-16
- 11 Merzenich MM, Nelson RJ, Stryker MP. et al. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 1984; 224: 591-605
- 12 Montoya P, Larbig W, Grulke N. et al. The relationship of phantom limb pain to other phantom limb phenomena in upper extremity amputees. Pain 1997; 72: 87-93
- 13 Melzack R. Phantom limbs and the concept of a neuromatrix. Trends Neurosci 1990; 13: 88-92
- 14 Flor H, Elbert T, Knecht S. et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 1995; 375: 482-484
- 15 Merzenich M. Long-term change of mind. Science 1998; 282: 1062-1063
- 16 Lotze M, Flor H, Grodd W. et al. Phantom movements and pain: An fMRI study in upper limb amputees. Brain 2001; 124: 2268-2277
- 17 Pons TP, Garraghty PE, Ommaya AK. et al. Massive cortical reorganization after sensory deafferentation in adult macaques. Science 1991; 252: 1857-1860
- 18 Culp CJ, Abdi S. Current understanding of phantom pain and its treatment. Pain Physician 2022; 25: E941-E957
- 19 Melzack R. From the gate to the neuromatrix. Pain 1999; 82: S121-S126
- 20 Flor H, Nikolajsen L, Staehelin Jensen T. Phantom limb pain: a case of maladaptive CNS plasticity?. Nat Rev Neurosci 2006; 7: 873-881
- 21 Jerath R, Crawford MW, Jensen M. Etiology of phantom limb syndrome: Insights from a 3D default space consciousness model. Med Hypotheses 2015; 85: 153-159
- 22 Makin TR, Flor H. Brain (re)organisation following amputation: Implications for phantom limb pain. NeuroImage 2020; 218: 116943
- 23 Diers M, Krumm B, Fuchs X. et al. The prevalence and characteristics of phantom limb pain and non-painful phantom phenomena in a nationwide survey of 3,374 unilateral limb amputees. J Pain 2022; 23: 411-423
- 24 Dellon AL, Aszmann OC. In musculus, veritas? Nerve “in muscle” versus targeted muscle reinnervation versus regenerative peripheral nerve interface: Historical review. Microsurgery 2020; 40: 516-522
- 25 Woo SL, Kung TA, Brown DL. et al. Regenerative peripheral nerve interfaces for the treatment of postamputation neuroma pain: A pilot study. Plast Reconstr Surg Glob Open 2016; 4: e1038
- 26 Gardetto A, Baur E-M, Prahm C. et al. Reduction of phantom limb pain and improved proprioception through a TSR-based surgical technique: a case series of four patients with lower limb amputation. J Clin Med 2021; 10: 4029
- 27 Coquillard C, Wee C, Kotha V. et al. TMRpni decreases long-term narcotic use in amputees: A case control study. Plast Reconstr Surg Glob Open 2021; 9: 105-106
- 28 Kurlander DE, Wee C, Chepla KJ. et al. TMRpni: Combining two peripheral nerve management techniques. Plast Reconstr Surg Glob Open 2020; 8: e3132
- 29 Mauch JT, Kao DS, Friedly JL. et al. Targeted muscle reinnervation and regenerative peripheral nerve interfaces for pain prophylaxis and treatment: A systematic review. PM R 2023; 15: 1457-1465
- 30 Dumanian GA, Potter BK, Mioton LM. et al. Targeted muscle reinnervation treats neuroma and phantom pain in major limb amputees: a randomized clinical trial. Ann Surg 2019; 270: 238-246
- 31 Langeveld M, Hundepool CA, Duraku LS. et al. Surgical treatment of peripheral nerve neuromas: a systematic review and meta-analysis. Plast Reconstr Surg 2022; 150: 823e-834e
- 32 Ernst J, Blatt M. Multiprofessionelle Versorgung als Maxime. Fachportal des Bundesverbandes für Orthopädie-Technik 2022 Accessed February 02, 2024 at: https://360-ot.de/multiprofessionelle-versorgung-als-maxime/?v=86e6e88dd080
- 33 Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e. V. (DGAI). S3-Leitlinie: Behandlung akuter perioperativer und posttraumatischer Schmerzen. 2021 Accessed February 02, 2024 at: https://register.awmf.org/assets/guidelines/001–025l_S3_Behandlung-akuter-perioperativer-posttraumatischer-Schmerzen_2022–11.pdf
- 34 Wandrey JD, Schäfer M, Erlenwein J. et al. Praxis der perioperativen Prävention von Phantomschmerz: eine deutschlandweite Umfrage. Anaesthesiologie 2022; 71: 834-845
- 35 Bosanquet DC, Glasbey JCD, Stimpson A. et al. Systematic review and meta-analysis of the efficacy of perineural local anaesthetic catheters after major lower limb amputation. Eur J Vasc Endovasc Surg 2015; 50: 241-249
- 36 Tafelski S. Perioperative Maßnahmen zur Prävention von Phantomschmerz: ein evidenzbasierter Ansatz zur Risikoreduktion. Anaesthesist 2020; 69: 665-671
- 37 Schlereth T. et al. Diagnose und nicht interventionelle Therapie neuropathischer Schmerzen, S2k-Leitlinie. 2014. Accessed February 02, 2024 at: https://register.awmf.org/assets/guidelines/030–114l_S2k_Diagnose-nicht-interventionelle-Therapie-neuropathischer-Schmerzen_2023–07.pdf
- 38 Schnabel A, Yahiaoui-Doktor M, Meissner W. et al. Predicting poor postoperative acute pain outcome in adults: an international, multicentre database analysis of risk factors in 50,005 patients. Pain Rep 2020; 5: e831
- 39 Glare P, Aubrey KR, Myles PS. Transition from acute to chronic pain after surgery. Lancet 2019; 393: 1537-1546
- 40 De Roos C, Veenstra A, De Jongh A. et al. Treatment of chronic phantom limb pain using a trauma-focused psychological approach. Pain Res Manag 2010; 15: 65-71
- 41 Theunissen M, Peters ML, Bruce J. et al. Preoperative anxiety and catastrophizing: A systematic review and meta-analysis of the association with chronic postsurgical pain. Clin J Pain 2012; 28: 819-841
- 42 Giusti EM, Lacerenza M, Manzoni GM. et al. Psychological and psychosocial predictors of chronic postsurgical pain: a systematic review and meta-analysis. Pain 2021; 162: 10-30
- 43 De Lange JWD, Hundepool CA, Power DM. et al. Prevention is better than cure: Surgical methods for neuropathic pain prevention following amputation – A systematic review. J Plast Reconstr Aesthet Surg 2022; 75: 948-959
- 44 Scott BB, Winograd JM, Redmond RW. Surgical approaches for prevention of neuroma at time of peripheral nerve injury. Front Surg 2022; 9: 819608
- 45 Valerio IL, Dumanian GA, Jordan SW. et al. Preemptive treatment of phantom and residual limb pain with targeted muscle reinnervation at the time of major limb amputation. J Am Coll Surg 2019; 228: 217-226
- 46 Häuser W. 2. Aktualisierung der S3 Leitlinie „Langzeitanwendungen von Opioiden bei chronischen nicht-tumorbedingten Schmerzen „LONTS“. Schmerz 2020; 34: 204-244
- 47 Alviar MJM, Hale T, Lim-Dungca M. Pharmacologic interventions for treating phantom limb pain. Cochrane Database Syst Rev 2016; (10) CD006380
- 48 Kern K-U, Baust H, Hofmann W. et al. Das 8%ige Capsaicin-Pflaster bei Phantomschmerz: Ergebnisse aus dem Praxisalltag (nichtinterventionelle Studie). Schmerz 2014; 28: 374-383
- 49 Ramachandran VS, Rogers-Ramachandran D. Synaesthesia in phantom limbs induced with mirrors. Proc Biol Sci 1996; 263: 377-386
- 50 Chan BL, Witt R, Charrow AP. et al. Mirror therapy for phantom limb pain. N Engl J Med 2007; 357: 2206-2207
- 51 Bandura A. Self-efficacy mechanism in human agency. Am Psychol 1982; 37: 122-147
- 52 Wittgenstein L. Preliminary Studies for the “Philosophical Investigations”: generally known as the Blue and Brown Books. New York: Harper and Row; 1965
- 53 Spitzenverband Bund der Krankenkassen (GKV-Spitzenverband), Bundesverband für Ergotherapeuten in Deutschland e. V. (BED), Deutschen Verband Ergotherapie e. V. (DVE). Sozialgesetzbuch V (SGB V). Vertrag nach § 125 Absatz 1 SGB V über die Versorgung mit Ergotherapie 2021
- 54 Ernst J, Michaelis I. VR, Gaming und Sensoren: „PROMPT“ weniger Schmerzen. Fachportal des Bundesverbandes für Orthopädie-Technik 2022 Accessed February 02, 2024 at: https://360-ot.de/projekt-prompt-will-schmerzen-nach-amputation-durch-digitale-technologien-reduzieren/?v=86e6e88dd080
- 55 Ortiz-Catalan M, Guðmundsdóttir RA, Kristoffersen MB. et al. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain. Lancet 2016; 388: 2885-2894
- 56 Diers M, Flor H. Phantomschmerz: Psychologische Behandlungsstrategien. Schmerz 2013; 27: 205-213
- 57 Moseley GL. Graded motor imagery for pathologic pain: A randomized controlled trial. Neurology 2006; 67: 2129-2134
- 58 Limakatso K, Madden VJ, Manie S. et al. The effectiveness of graded motor imagery for reducing phantom limb pain in amputees: a randomised controlled trial. Physiotherapy 2020; 109: 65-74
- 59 Dietrich C, Nehrdich S, Seifert S. et al. Leg prosthesis with somatosensory feedback reduces phantom limb pain and increases functionality. Front Neurol 2018; 9: 270
- 60 Rognini G, Petrini FM, Raspopovic S. et al. Multisensory bionic limb to achieve prosthesis embodiment and reduce distorted phantom limb perceptions. J Neurol Neurosurg Psychiatry 2019; 90: 833-836
- 61 Schweisfurth MA, Markovic M, Dosen S. et al. Electrotactile EMG feedback improves the control of prosthesis grasping force. J Neural Eng 2016; 13: 056010
- 62 Bernhart S, Kranzinger S, Berger A. et al. Ground contact time estimating wearable sensor to measure spatio-temporal aspects of gait. Sensors 2022; 22: 3132
- 63 Petrini FM, Bumbasirevic M, Valle G. et al. Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat Med 2019; 25: 1356-1363
- 64 Markovic M, Schweisfurth MA, Engels LF. et al. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis. J Neuro Engineering Rehabil 2018; 15: 28
- 65 Aman M, Festin C, Sporer ME. et al. Bionic reconstruction: Restoration of extremity function with osseointegrated and mind-controlled prostheses. Wien Klin Wochenschr 2019; 131: 599-607
- 66 Kuiken TA, Dumanian GA, Lipschutz RD. et al. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int 2004; 28: 245-253
- 67 Farina D, Castronovo AM, Vujaklija I. et al. Common synaptic input to motor neurons and neural drive to targeted reinnervated muscles. J Neurosci 2017; 37: 11285-11292
- 68 Senger J-LB, Hardy P, Thorkelsson A. et al. A direct comparison of targeted muscle reinnervation and regenerative peripheral nerve interfaces to prevent neuroma pain. Neurosurgery 2023; 93: 1180-1191
- 69 Kubiak CA, Kemp SWP, Cederna PS. Regenerative peripheral nerve interface for management of postamputation neuroma. JAMA Surg 2018; 153: 681
- 70 Sensinger JW, Dosen S. A review of sensory feedback in upper-limb prostheses from the perspective of human motor control. Front Neurosci 2020; 14: 345
- 71 Raspopovic S, Valle G, Petrini FM. Sensory feedback for limb prostheses in amputees. Nat Mater 2021; 20: 925-939