RSS-Feed abonnieren

DOI: 10.1055/a-2179-5818
Machine learning methods for tracer kinetic modelling
Methoden des maschinellen Lernens für die Tracerkinetische Modellierung
Abstract
Tracer kinetic modelling based on dynamic PET is an important field of Nuclear Medicine for quantitative functional imaging. Yet, its implementation in clinical routine has been constrained by its complexity and computational costs. Machine learning poses an opportunity to improve modelling processes in terms of arterial input function prediction, the prediction of kinetic modelling parameters and model selection in both clinical and preclinical studies while reducing processing time. Moreover, it can help improving kinetic modelling data used in downstream tasks such as tumor detection. In this review, we introduce the basics of tracer kinetic modelling and present a literature review of original works and conference papers using machine learning methods in this field.
Zusammenfassung
Die Modellierung der Kinetik von Tracern auf der Grundlage der dynamischen PET ist ein wichtiger Bereich der quantitativen funktionellen Bildgebung in der Nuklearmedizin. Ihre Umsetzung in der klinischen Routine wird jedoch durch ihre Komplexität und ihre Rechenkosten eingeschränkt. Das maschinelle Lernen bietet die Möglichkeit, die Modellierungsprozesse im Hinblick auf die Vorhersage der arteriellen Eingangsfunktion, die Berechnung der kinetischen Modellierungsparameter und die Modellauswahl sowohl in klinischen als auch in präklinischen Studien zu verbessern und gleichzeitig die Verarbeitungszeit zu verkürzen. Darüber hinaus kann sie dazu beitragen, den Nutzen von kinetischen Modellierungsdaten bei nachgelagerten Aufgaben, wie z. B. der Tumorerkennung, zu verbessern. In dieser Übersicht stellen wir die Grundlagen der kinetischen Modellierung von Tracern vor und präsentieren eine Literaturübersicht über Originalarbeiten und Konferenzbeiträge, die Methoden des maschinellen Lernens in diesem Bereich verwenden.
Key words
tracer kinetic modelling - physiologically-based pharmacokinetic modelling - PBPK modelling - machine learning - deep learningPublikationsverlauf
Eingereicht: 01. September 2023
Angenommen: 21. September 2023
Artikel online veröffentlicht:
11. Oktober 2023
© 2023. The Author(s). This article was originally published by Thieme as Michael P. Lux et al. Update Breast Cancer 2023 Part 2 – Advanced-Stage Breast Cancer. Geburtsh Frauenheilk 2023; 83: 664–673 as an open access article under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Ikoma Y, Watabe H, Shidahara M. et al. PET kinetic analysis: error consideration of quantitative analysis in dynamic studies. Ann Nucl Med 2008; 22 (01) 1-11
- 2 Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 1983; 3 (01) 1-7
- 3 Logan J, Fowler JS, Volkow ND. et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 1990; 10 (05) 740-747
- 4 Liu Z, Jian Z, Wang Q. et al. A Continuously Infused Microfluidic Radioassay System for the Characterization of Cellular Pharmacokinetics. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2016; 57 (10) 1548-1555
- 5 Carson RE. Tracer Kinetic Modeling in PET. In: Bailey DL, Townsend DW, Valk PE. et al. editors. Positron Emission Tomography: Basic Sciences. London: Springer-Verlag; 2006
- 6 Kuttner S, Wickstrom KK, Lubberink M. et al. Cerebral blood flow measurements with (15)O-water PET using a non-invasive machine-learning-derived arterial input function. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 2021; 41 (09) 2229-2241
- 7 Cunningham VJ. Non-linear regression techniques in data analysis. Med Inform 1985; 10 (02) 137-142
- 8 Landaw EE, DiStefano III JJ. Multiexponential, multicompartmental, and noncompartemental modeling. II. Data analysis and statistical considerations. AmJPhysiol 1984; 246: R666
- 9 Akaike H. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control 1974; 19 (06) 716-723
- 10 Schwarz G. Estimating the dimension of a model. Ann Statist 1978; 6 (02) 461-464
- 11 Innis RB, Cunningham VJ, Delforge J. et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 2007; 27 (09) 1533-1539
- 12 Miederer I, Ziegler SI, Liedtke C. et al. Kinetic modelling of [11C]flumazenil using data-driven methods. Eur J Nucl Med Mol Imaging 2009; 36 (04) 659-670
- 13 Kuttner S, Wickstrom KK, Kalda G. et al. Machine learning derived input-function in a dynamic (18)F-FDG PET study of mice. Biomed Phys Eng Express 2020; 6 (01) 015020
- 14 Wang L, Ma T, Yao S. et al. Direct Estimation of Input Function Based on Fine-tuned Deep Learning Method in Dynamic PET Imaging. J Nucl Med 2020; 61 (Suppl. 01) 1394
- 15 Ding W, Yu J, Zheng C. et al. Machine Learning-Based Noninvasive Quantification of Single-Imaging Session Dual-Tracer (18)F-FDG and (68)Ga-DOTATATE Dynamic PET-CT in Oncology. IEEE Trans Med Imaging 2022; 41 (02) 347-359
- 16 Pan L, Cheng C, Haberkorn U. et al. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data. Physics in medicine and biology 2017; 62 (09) 3566-3581
- 17 Golish SR, Hove JD, Schelbert HR. et al. A fast nonlinear method for parametric imaging of myocardial perfusion by dynamic (13)N-ammonia PET. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2001; 42 (06) 924-931
- 18 Wang B, Ruan D, Liu H. Noninvasive Estimation of Macro-Parameters by Deep Learning. IEEE Trans Radiat Plasma Med Sci 2020; 4 (06) 684-695
- 19 Wang R, Liu H, Toyonaga T. et al. Generation of synthetic PET images of synaptic density and amyloid from (18) F-FDG images using deep learning. Medical physics 2021; 48 (09) 5115-5129
- 20 Cui J, Gong K, Guo N. et al. Unsupervised PET logan parametric image estimation using conditional deep image prior. Medical image analysis 2022; 80: 102519
- 21 Logan J, Fowler JS, Volkow ND. et al. Distribution volume ratios without blood sampling from graphical analysis of PET data. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 1996; 16 (05) 834-840
- 22 Fuller OK, Angelis G, Meikle SR. Classification of Neurotransmitter Response in Dynamic PET Data Using Machine Learning Approaches. IEEE Trans Radiat Plasma Med Sci 2020; 4 (06) 708-719
- 23 Normandin MD, Schiffer WK, Morris ED. A linear model for estimation of neurotransmitter response profiles from dynamic PET data. NeuroImage 2012; 59 (03) 2689-2699
- 24 De Benetti F, Walter Simson W, Paschali M. et al. Self-Supervised Learning for Physiologically-Based Pharmacokinetic Modeling in Dynamic PET. Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023;
- 25 Huang Z, Wu Y, Fu F. et al. Parametric image generation with the uEXPLORER total-body PET/CT system through deep learning. Eur J Nucl Med Mol Imaging 2022; 49 (08) 2482-2492
- 26 Wang H, Wu Y, Huang Z. et al. Deep learning-based dynamic PET parametric K(i) image generation from lung static PET. Eur Radiol 2023; 33 (04) 2676-2685
- 27 Xiaoyin C, Zhoulei L, Zhen L. et al. Direct Parametric Image Reconstruction in Reduced Parameter Space for Rapid Multi-Tracer PET Imaging. IEEE Trans Med Imaging 2015; 34 (07) 1498-1512
- 28 Gong K, Catana C, Qi J. et al. Direct Reconstruction of Linear Parametric Images From Dynamic PET Using Nonlocal Deep Image Prior. IEEE Trans Med Imaging 2022; 41 (03) 680-689
- 29 Li Y, Hu J, Sari H. et al. A deep neural network for parametric image reconstruction on a large axial field-of-view PET. Eur J Nucl Med Mol Imaging 2023; 50 (03) 701-714
- 30 Klyuzhin IS, Bevington CWJ, Cheng JK. et al. Detection of transient neurotransmitter response using personalized neural networks. Physics in medicine and biology 2020; 65 (23) 235004
- 31 Spuhler KD, Gardus 3rd J, Gao Y. et al. Synthesis of Patient-Specific Transmission Data for PET Attenuation Correction for PET/MRI Neuroimaging Using a Convolutional Neural Network. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2019; 60 (04) 555-560
- 32 Klyuzhin IS, Cheng JC, Bevington C. et al. Use of a Tracer-Specific Deep Artificial Neural Net to Denoise Dynamic PET Images. IEEE Trans Med Imaging 2020; 39 (02) 366-376
- 33 Shiyam Sundar LK, Iommi D, Muzik O. et al. Conditional Generative Adversarial Networks Aided Motion Correction of Dynamic (18)F-FDG PET Brain Studies. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2021; 62 (06) 871-879
- 34 Feng T, Zhao Y, Dong Y. et al. Acceleration of Whole-body Patlak Parametric Image Reconstruction using Convolutional Neural Network. J Nucl Med 2019; 60 (Suppl. 01) 518
- 35 Xie N, Gong K, Guo N. et al. Clinically Translatable Direct Patlak Reconstruction from Dynamic PET with Motion Correction Using Convolutional Neural Network. Medical Image Computing and Computer Assisted Intervention (MICCAI) 2020;
- 36 Rubinstein E, Salhov M, Nidam-Leshem M. et al. Unsupervised tumor detection in Dynamic PET/CT imaging of the prostate. Medical image analysis 2019; 55: 27-40
- 37 Besson FL, Fernandez B, Faure S. et al. Fully Integrated Quantitative Multiparametric Analysis of Non-Small Cell Lung Cancer at 3-T PET/MRI: Toward One-Stop-Shop Tumor Biological Characterization at the Supervoxel Level. Clin Nucl Med 2021; 46 (09) e440-e447
- 38 Abazari MA, Soltani M, Moradi Kashkooli F. et al. Synthetic 18F-FDG PET Image Generation Using a Combination of Biomathematical Modeling and Machine Learning. Cancers (Basel) 2022; 14 (11)