Planta Med 2024; 90(01): 63-72
DOI: 10.1055/a-2181-2886
Natural Product Chemistry and Analytical Studies
Original Papers

Establishment of the Daucus carota SMC-1 Cell Suspension Line for Poliovirus Vaccine Development

Mónica Morales-Aguilar
1   Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
,
Omayra Citlalli Bolaños-Martínez
2   Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, SLP, Mexico
,
Andrea Romero Maldonado
2   Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, SLP, Mexico
3   Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Mexico
,
Dania O. Govea-Alonso
2   Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, SLP, Mexico
3   Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Mexico
,
Christian Carreño-Campos
1   Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
,
María Luisa Villarreal
1   Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
,
Sergio Rosales-Mendoza
2   Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, SLP, Mexico
3   Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Mexico
,
Anabel Ortiz-Caltempa
1   Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
› Institutsangaben
This study was funded by CONACYT/México (grant CF-2019-848290).

Abstract

The development of virus-free, oral vaccines against poliovirus capable of inducing mucosal protective immunity is needed to safely combat this pathogen. In the present study, a carrot cell line expressing the poliovirus VP2 antigen was established at the level of callus and cell suspensions, exploring the effects of culture media (MS and B5), supplementation with urea, phytoregulators (2,4-D : KIN), and light conditions (continuous light, photoperiod, and total darkness). The best callus growth was obtained on B5 medium supplemented with 2 mg/L of 2,4-D + 2 mg/L kinetin and 0.0136 g/L of urea and in continuous light conditions. Suspension cultures of the SMC-1 line in 250 mL Erlenmeyer flasks had a maximum growth of 16.07 ± 0.03 g/L DW on day 12 with a growth rate of µ=0.3/d and a doubling time of 2.3 days. In a 2 L airlift bioreactor, the biomass yield achieved was 25.6 ± 0.05 g/L DW at day 10 with a growth rate of µ= 0.58/d and doubling time of 1.38 d. Cell growth was 1.5 times higher in bioreactors than in shake flasks, highlighting that both systems resulted in the accumulation of VP2 throughout the time in culture. The maximum VP2 yield in flasks was 387.8 µg/g DW at day 21, while in the reactor it was 550.2 µg/g DW at day 18. In conclusion, bioreactor-based production of the VP2 protein by the SMC-1 suspension cell line offers a higher productivity when compared to flask cultures, offering a key perspective to produce low-cost vaccines against poliomyelitis.

Supporting Information



Publikationsverlauf

Eingereicht: 01. Juni 2023

Angenommen nach Revision: 20. September 2023

Artikel online veröffentlicht:
18. Oktober 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Jiang P, Liu Y, Ma HC, Paul AV, Wimmer E. Picornavirus morphogenesis. Microbiol Mol Biol Rev 2014; 78: 418-437
  • 2 Emini EA, Dorner AJ, Dorner LF, Jameson BA, Wimmer E. Identification of a poliovirus neutralization epitope through use of neutralizing antiserum raised against a purified viral structural protein. Virology 1983; 124: 144-151
  • 3 World Health Organization. Poliomyelitis. Accessed January 15, 2020 at: https://www.who.int/westernpacific/health-topics/poliomyelitis%23tab=tab_1
  • 4 Nathanson N. The pathogenesis of poliomyelitis: What we donʼt know. Adv Virus Res 2008; 71: 1-50
  • 5 Global Polio Eradication Initiative. Zugriff am 16. August 2020 unter: http://polioeradication.org/polio-today/
  • 6 Burns CC, Diop OM, Sutter RW, Kew OM. Vaccine-derived polioviruses. J Infect Dis 2014; 210 (Suppl. 01) S283-S293
  • 7 Kwon KC, Verma D, Singh ND, Herzog R, Daniell H. Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv Drug Deliv Rev 2013; 65: 782-799
  • 8 Rosales-Mendoza S, Nieto-Gómez R. Green therapeutic biocapsules: Using plant cells to orally deliver biopharmaceuticals. Trends Biotechnol 2018; 36 (10) 1054-1067
  • 9 Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Nataf Y, Bartfeld D, Ariel T, Gingis-Velitski S, Hanania U, Shaaltiel Y. Large-scale production of pharmaceutical proteins in plant cell culture-The protalix experience. Plant Biotechnol J 2015; 13: 1199-1208
  • 10 Lindh I, Wallin A, Kalbina I, Sävenstrand H, Engström P, Andersson S, Strid A. Production of the p 24 capsid protein from HIV-1 subtype C in Arabidopsis thaliana and Daucus carota using an endoplasmic reticulum-directing SEKDEL sequence in protein expression constructs. Protein Expr Purif 2009; 66: 46-51
  • 11 Rosales-Mendoza S, Soria-Guerra RE, López-Revilla R, Moreno-Fierros L, Alpuche-Solís AG. Ingestion of transgenic carrots expressing the Escherichia coli heat-labile enterotoxin B subunit protects mice against cholera toxin challenge. Plant Cell Rep 2008; 27: 79-84
  • 12 Monreal-Escalante E, Govea-Alonso DO, Hernández M, Cervantes J, Salazar-González JA, Romero-Maldonado A, Rosas G, Garate T, Fragoso G, Sciutto E, Rosales-Mendoza S. Towards the development of an oral vaccine against porcine cysticercosis: Expression of the protective HP6/TSOL18 antigen in transgenic carrots cells. Planta 2016; 243: 675-685
  • 13 Govea-Alonso DO, Tello-Olea MA, Beltrán-López J, Monreal-Escalante E, Salazar-Gonzalez JA, Bañuelos-Hernández B, Rosales-Mendoza S. Assessment of carrot callus as biofactories of an atherosclerosis oral vaccine prototype. Mol Biotechnol 2017; 59: 482-489
  • 14 Arevalo-Villalobos JI, Govea Alonso DO, Rosales-Mendoza S. Using carrot cells as biofactories and oral delivery vehicles of LTB-Syn: A low-cost vaccine candidate against synucleinopathies. J Biotechnol 2020; 309: 75-80
  • 15 Issaro N, Wang D, Liu M, Tassaneetrithep B, Phawong C, Rattanarojpong T, Jiang C. Transfenic carrot plant-made edible vaccines against human infectious diseases. JIPBS 2018; 5: 43-48
  • 16 Rosales-Mendoza S, Tello-Olea MA. Carrot cells: A pioneering platform for biopharmaceuticals production. Mol Biotechnol 2015; 57: 219-232
  • 17 Moon KB, Park JS, Park YI, Song IJ, Lee HJ, Cho HS, Jeon JH, Kim HS. Development of systems for the production of plant-derived biopharmaceuticals. Plants (Basel) 2019; 9: 30
  • 18 Bolaños-Martínez OC, Govea-Alonso DO, Cervantes-Torres J, Hernández M, Fragoso G, Sciutto-Conde E, Rosales-Mendoza S. Expression of immunogenic poliovirus Sabin type 1 VP proteins in transgenic tobacco. J Biotechnol 2020; 322: 10-20
  • 19 Eibl R, Eibl D. Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev 2008; 7: 593-598
  • 20 Shriram V, Kumar V, Shitole MG. Indirect organogenesis and plant regeneration in Helicteres isora L., an important medicinal plant. In Vitro Cell Dev Biol Plant 2008; 44: 186-193
  • 21 Thom ER, Dorofaeff FD, Dyson CB. Effect of plant population and time of harvest on yield and quality of maize (Zea mays L.) grown for silage. New Zealand J Agric Res 2013; 24: 285-292
  • 22 Holland T, Sack M, Rademacher T, Schmale K, Altmann F, Stadlmann J, Fischer R, Hellwig S. Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture. Biotechnol Bioeng 2010; 107 (02) 278-289
  • 23 Zabala MA, Angarita M, Restrepo JM, Caicedo LA, Perea M. Elicitation with methyl-jasmonate stimulates peruvoside production in cell suspension cultures of Thevetia peruviana . In Vitro Cell Dev Biol Plant 2010; 46: 233-238
  • 24 Carreño-Campos C, Arevalo-Villalobos JI, Villarreal ML, Ortiz-Caltempa A, Rosales-Mendoza S. Establishment of the carrot-made LTB-Syn antigen cell line in shake flask and airlift bioreactor cultures. Planta Med 2022; 88: 1060-1068
  • 25 Loyola-Vargas VM, Ochoa-Alejo N. An introduction to plant tissue culture: Advances and perspectives. Methods Mol Biol 2018; 1815: 3-13
  • 26 Fett-Neto AG, Zhang WY, Dicosmo F. Kinetics of taxol production, growth, and nutrient uptake in cell suspensions of Taxus cuspidata . Biotechnol Bioeng 1994; 44: 205-210
  • 27 Widholm JM. The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol 1972; 47: 189-194
  • 28 Trejo-Tapia G, Cerda-García-Rojas CM, Rodríguez-Monroy M, Ramos-Valdivia AC. Monoterpenoid oxindole alkaloid production by Uncaria tomentosa (Willd) D.C. cell cultures in a stirred tank bioreactor. Biotechnol Prog 2005; 21: 786-792
  • 29 Bolaños-Martínez OC, Govea-Alonso DO, Cervantes-Torres J, Hernández M, Fragoso G, Sciutto-Conde E, Rosales-Mendoza S. Expression of immunogenic poliovirus Sabin type 1 VP proteins in transgenic tobacco. J Biotechnol 2020; 322: 10-20
  • 30 Bolaños-Martínez OC, Govea-Alonso DO, Fragoso G, Sciutto E, Rosales-Mendoza S. Carrot cells expressing the VP1 and VP2 poliovirus proteins effectively elicited mucosal immunity. PCTOC 2022; 148: 545-556
  • 31 Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M. Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 2012; 4: 10-20
  • 32 Dakah A, Zaid S, Suleiman M, Abbas S, Wink M. Propagation of the medicinal plant Ziziphora tenuior L. and evaluation of its antioxidant activity. Saudi J Biol Sci 2014; 21: 317-323
  • 33 Fujiyama K, Saejung W, Yanagihara I, Nakado J, Misaki R, Honda T, Watanabe Y, Seki T. In Planta production of immunogenic poliovirus peptide using tobacco mosaic virus-based vector system. J Biosci Bioeng 2006; 101: 398-402
  • 34 Chan HT, Xiao Y, Weldon WC, Oberste SM, Chumakov K, Daniell H. Cold chain and virus-free chloroplast-made booster vaccine to confer immunity against different poliovirus serotypes. Plant Biotechnol J 2016; 14: 2190-2200
  • 35 Chan HT, Daniell H. Plant-made oral vaccines against human infectious diseases-Are we there yet?. Plant Biotechnol J 2015; 13: 1056-1070
  • 36 Xiao Y, Daniell H. Long-term evaluation of mucosal and systemic immunity and protection conferred by different polio booster vaccines. Vaccine 2017; 35: 5418-5425
  • 37 Nahampun HN, Bosworth B, Cunnick J, Mogler M, Wang K. Expression of H3N2 nucleoprotein in maize seeds and immunogenicity in mice. Plant Cell Rep 2015; 34: 969-980
  • 38 Su J, Zhu L, Sherman A, Wang X, Lin S, Kamesh A, Norikane JH, Streatfield SJ, Herzog RW, Daniell H. Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials 2015; 70: 84-93
  • 39 Kim MY, Kim TG, Yang MS. Production and immunogenicity of Actinobacillus pleuropneumoniae ApxIIA protein in transgenic rice callus. Protein Expr Purif 2017; 132: 116-123
  • 40 Giddings G, Allison G, Brooks D, Carter A. Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 2000; 18: 1151-1155
  • 41 Kumar G, Karthik L, Rao KVB. Plant Vaccines: An Overview. In: Singh J, Sharma D, Kumar G, Sharma N. Eds. Microbial Bioprospecting for Sustainable Development. Singapore: Springer; 2018: 249-263
  • 42 Rosales-Mendoza S, Nieto-Gómez R. Green Therapeutic biocapsules: Using plant cells to orally deliver biopharmaceuticals. Trends Biotechnol 2018; 36 (10) 1054-1067
  • 43 Zagorskaya AA, Deineko EV. Suspension-cultured plant cells as a platform for obtaining recombinant proteins. Russ J Plant Physiol 2017; 64: 795-807
  • 44 Zagorskaya AA, Deineko EV. Plant-expression systems: A new stage in production of biopharmaceutical preparations. Russ J Plant Physiol 2021; 68: 17-30
  • 45 Kwon JY, Jeong SH, Choi JW, Pak YY, Kim DI. Assessment of long-term cryopreservation for production of hCTLA4Ig in transgenic rice cell suspension cultures. Enzyme Microb Technol 2013; 53: 216-222
  • 46 Murashige T, Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 1962; 15: 473-497
  • 47 Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 1968; 50: 151-158
  • 48 Rosales-Mendoza S, Soria-Guerra RE, de Jesús Olivera-Flores MT, López-Revilla R, Argüello-Astorga GR, Jiménez-Bremont JF, García-de la Cruz RF, Loyola-Rodríguez JP, Alpuche-Solís AG. Expression of Escherichia coli heat-labile enterotoxin b subunit (LTB) in carrot (Daucus carota L.). Plant Cell Rep 2007; 26: 969-976