Synthesis 2024; 56(10): 1541-1548
DOI: 10.1055/a-2183-4332
short review
Bürgenstock Special Section 2022 – Future Stars in Organic Chemistry

Discovery of Divergent, Light-Controlled Catalysis Triggered by Ligand Photodissociation from Cobalt Complexes

Nikita Vystavkin
,
Manuel Barday
,
Christopher J. Teskey
The Fonds der Chemischen Industrie (Liebig Fellowship) and the Deutsche Forschungsgemeinschaft (grant number 491117731) are acknowledged for funding.


Abstract

Photochemistry has become a key area of research in synthetic chemistry over the last few decades. More recently, interest has grown in merging this area with transition metal catalysis to develop new reactivity. One key photoinduced step in this context is ligand dissociation from transition metal complexes. This has been used to develop light-gated catalysis, allowing for on/off control over a reaction. However, this concept can only result in a single product outcome. Our group has focused on the development of cobalt-catalyzed reactivity switches, enabled by a simple photodissociation step, which promotes one mechanistic path or another. As such, we can use a single catalytic platform to yield two different outcomes depending on whether the reaction is irradiated with light or not. This short review will focus on works in this area by our group and others.

1 Introduction

2 Photocontrolled Hydroboration

3 Hydrogenation and Hydroformylation

4 Conclusion



Publication History

Received: 01 September 2023

Accepted after revision: 28 September 2023

Accepted Manuscript online:
28 September 2023

Article published online:
14 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Current address: Institut Lavoisier de Versailles, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des États Unis, 78000 Versailles, France.
    • 1b Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
  • 2 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
  • 3 Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 52
  • 4 Wegner OS. J. Am. Chem. Soc. 2018; 140: 13522
  • 5 Parasram M, Gevorgyan V. Chem. Soc. Rev. 2017; 46: 6227
  • 6 Ravetz BD, Wang JY, Ruhl KE, Rovis T. ACS Catal. 2019; 9: 200
  • 7 Shields BJ, Kudisch B, Scholes GD, Doyle AG. J. Am. Chem. Soc. 2018; 140: 3035
  • 8 Thullen SM, Rovis T. J. Am. Chem. Soc. 2017; 139: 15504
  • 9 Moggi L, Juris A, Sandrini D, Manfrin MF. Rev. Chem. Intermed. 1981; 4: 171
  • 10 Turner JJ, George MW, Poliakoff M, Perutz RN. Chem. Soc. Rev. 2022; 51: 5300
  • 11 Strohmeier W, Gerlach KI. Z. Naturforsch., B 1960; 15: 9
  • 12 Strohmeier W. Angew. Chem., Int. Ed. Engl. 1964; 3: 730
  • 13 Massey AG, Orgel LE. Nature 1961; 191: 1387
  • 14 Stoll RS, Hecht S. Angew. Chem. Int. Ed. 2010; 49: 5054
  • 15 Ruhl KE, Rovis T. J. Am. Chem. Soc. 2016; 138: 15527
  • 16 Freixa Z. Catal. Sci. Technol. 2020; 10: 3122
  • 17 Teator AJ, Shao H, Lu G, Liu P, Bielawski CW. Organometallics 2017; 36: 490
  • 18 Lunic D, Bergamaschi E, Teskey CJ. Angew. Chem. Int. Ed. 2021; 60: 20594
  • 19 Blanco V, Leigh DA, Marcos V. Chem. Soc. Rev. 2015; 44: 5341
  • 20 Onishi M, Hiraki K, Matsuda M, Fukunaga T. Chem. Lett. 1983; 12: 261
  • 21 Onishi M, Oishi S, Sakaguchi M, Takaki I, Hiraki K. Bull. Chem. Soc. Jpn. 1986; 59: 3925
  • 22 Onishi M, Hiraki K, Ishida Y, Dakeshita K. Chem. Lett. 1986; 15: 267
  • 23 Onishi M. J. Mol. Catal. 1993; 80: 145
  • 24 Boucher DG, Pendergast AD, Wu X, Nguyen ZA, Jadhav RG, Lin S, White HS, Minteer SD. J. Am. Chem. Soc. 2023; 145: 17665
  • 25 Bergamaschi E, Beltran F, Teskey CJ. Chem. Eur. J. 2020; 26: 5180
  • 26 Li H, Obligacion JV, Chirik PJ, Hall MB. ACS Catal. 2018; 8: 10606
  • 27 Schmidt A, Nödling AR, Hilt G. Angew. Chem. Int. Ed. 2015; 54: 801
  • 28 Beltran F, Bergamaschi E, Funes-Ardoiz I, Teskey CJ. Angew. Chem. Int. Ed. 2020; 59: 21176
  • 29 Carey FA, Sundberg RJ. Advanced Organic Chemistry, Part B: Reduction of Carbon-Carbon Multiple Bonds, Carbonyl groups, and other Functional groups. Springer; Boston: 2007: 367
  • 30 Pearson RG, Songstad J. J. Am. Chem. Soc. 1967; 89: 1827
  • 31 Pearson RG. Chemical Hardness: Applications from Molecules to Solids, Chap. 1: The HSAB Principle. Wiley-VCH Verlag GmbH; Weinheim: 1997: 1-27
  • 32 Mayr H, Breugst M, Ofial AR. Angew. Chem. Int. Ed. 2011; 50: 6470
  • 33 Lipshutz BH, Papa P. Angew. Chem. Int. Ed. 2002; 41: 4580
  • 34 Gennari C, Colombo L, Scolastico C, Todeschini R. Tetrahedron 1984; 40: 4051
  • 35 Bergamaschi E, Lunic D, McLean LA, Hohenadel M, Chen Y.-K, Teskey CJ. Angew. Chem. Int. Ed. 2022; 61: e202114482
  • 36 Hui C, Chen F, Pu F, Xu J. Nat. Rev. Chem. 2019; 3: 85
  • 37 Bergamaschi E, Teskey CJ. Tetrahedron Lett. 2022; 98: 153813
  • 38 Mendelsohn LN, MacNeil CS, Tian L, Park Y, Scholes GD, Chirik PJ. ACS Catal. 2021; 11: 1351
  • 39 MacNeil CS, Mendelsohn LN, Pabst TP, Hierlmeier G, Chirik PJ. J. Am. Chem. Soc. 2022; 144: 19219