RSS-Feed abonnieren
DOI: 10.1055/a-2183-5802
Neoadjuvant immunotherapy for head and neck squamous cell carcinoma
Artikel in mehreren Sprachen: deutsch | EnglishAbstract
The neoadjuvant immunotherapy approach marks a significant shift in the treatment paradigm of potentially curable HNSCC. Here, current therapies, despite being highly individualized and advanced, often fall short in achieving satisfactory long-term survival rates and are frequently associated with substantial morbidity.
The primary advantage of this approach lies in its potential to intensify and enhance treatment regimens, offering a distinct modality that complements the existing triad of surgery, radiotherapy, and chemotherapy. Checkpoint inhibitors have been at the forefront of this evolution. Demonstrating moderate yet significant survival benefits in the recurrent-metastatic setting with a relatively better safety profile compared to conventional treatments, these agents hold promise when considered for earlier stages of HNSCC.
On the other hand, a significant potential benefit of introducing immunotherapy in the neoadjuvant phase is the possibility of treatment de-escalation. By reducing the tumor burden before surgery, this strategy could lead to less invasive surgical interventions. The prospect of organ-sparing protocols becomes a realistic and highly valued goal in this context. Further, the early application of immunotherapy might catalyze a more effective and durable immune response. The induction of an immune memory may potentially lead to a more effective surveillance of residual disease, decreasing the rates of local, regional, and distant recurrences, thereby enhancing overall and recurrence-free survival.
However, neoadjuvant immunotherapy is not without its challenges. One of the primary concerns is the safety and adverse events profile. While data suggest that adverse events are relatively rare and manageable, the long-term safety profile in the neoadjuvant setting, especially in the context of curative intent, remains a subject for ongoing research. Another unsolved issue lies in the accurate assessment of treatment response. The discrepancy between radiographic assessment using RECIST criteria and histological findings has been noted, indicating a gap in current imaging techniques’ ability to accurately reflect the true efficacy of immunotherapy. This gap underscores the necessity for improved imaging methodologies and the development of new radiologic and pathologic criteria tailored to evaluate the response to immunotherapy accurately.
Treatment combinations and timing represent another layer of complexity. There is a vast array of possibilities in combining immunotherapy agents with conventional chemotherapy, targeted therapy, radiation, and other experimental treatments. Determining the optimal treatment regimen for individual patients becomes an intricate task, especially when comparing small, single-arm, non-randomized trials with varying regimens and outcome measures.
Moreover, one needs to consider the importance of pre- and intraoperative decision-making in the context of neoadjuvant immunotherapy. As experience with this treatment paradigm grows, there is potential for more tailored surgical approaches based on the patient’s remaining disease post-neoadjuvant treatment. This consideration is particularly relevant in extensive surgeries, where organ-sparing protocols could be evaluated.
In practical terms, the multi-modal nature of this treatment strategy introduces complexities, especially outside clinical trial settings. Patients face challenges in navigating the treatment landscape, which involves coordination across multiple medical disciplines, highlighting the necessity for streamlined care pathways at specialized centers to facilitate effective treatment management if the neoadjuvant approach is introduced to the real-world.
These potential harms and open questions underscore the critical need for meticulously designed clinical trials and correlational studies to ensure patient safety and efficacy. Only these can ensure that this new treatment approach is introduced in a safe way and fulfils the promise it theoretically holds.
Publikationsverlauf
Artikel online veröffentlicht:
02. Mai 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Lacas B, Carmel A, Landais C. et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 107 randomized trials and 19,805 patients, on behalf of MACH-NC Group. Radiother Oncol 2021; 156: 281-293 DOI: 10.1016/j.radonc.2021.01.013.
- 2 Bernier J, Cooper JS, Pajak TF. et al. Defining risk levels in locally advanced head and neck cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck 2005; 27: 843-850 DOI: 10.1002/hed.20279.
- 3 Hussain A, Kim EY, Khachemoune A. Systematic review of benefits and practical challenges for application of Mohs surgery for oral tumors [published online ahead of print, 2023 May 12]. Arch Dermatol Res 2023; 10.1007/s00403-023-02632-3 DOI: 10.1055/a-1647-8650.
- 4 Nutting CM, Morden JP, Harrington KJ. et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol 2011; 12: 127-136 DOI: 10.1016/S1470-2045(10)70290-4.
- 5 Mehra R, Cohen RB, Burtness BA. The role of cetuximab for the treatment of squamous cell carcinoma of the head and neck. Clin Adv Hematol Oncol 2008; 6: 742-750
- 6 Pulte D, Brenner H. Changes in survival in head and neck cancers in the late 20th and early 21st century: a period analysis. Oncologist 2010; 15: 994-1001 DOI: 10.1634/theoncologist.2009-0289.
- 7 Chaturvedi AK, Engels EA, Pfeiffer RM. et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 2011; 29: 4294-4301 DOI: 10.1200/JCO.2011.36.4596.
- 8 Kim YJ, Kim JH. Increasing incidence and improving survival of oral tongue squamous cell carcinoma. Sci Rep 2020; 10: 7877 Published 2020 May 12 DOI: 10.1038/s41598-020-64748-0.
- 9 Huang SH, Xu W, Waldron J. et al. Refining American Joint Committee on Cancer/Union for International Cancer Control TNM stage and prognostic groups for human papillomavirus-related oropharyngeal carcinomas. J Clin Oncol 2015; 33: 836-845 DOI: 10.1200/JCO.2014.58.6412.
- 10 Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma [published correction appears in Nat Rev Dis Primers. 2023 Jan 19;9(1):4]. Nat Rev Dis Primers 2020; 6: 92 Published 2020 Nov 26 DOI: 10.1038/s41572-020-00224-3.
- 11 Kraaijenga SA, Oskam IM, van Son RJ. et al. Assessment of voice, speech, and related quality of life in advanced head and neck cancer patients 10-years+after chemoradiotherapy. Oral Oncol 2016; 55: 24-30 DOI: 10.1016/j.oraloncology.2016.02.001.
- 12 Kuhn MA, Gillespie MB, Ishman SL. et al. Expert Consensus Statement: Management of Dysphagia in Head and Neck Cancer Patients. Otolaryngol Head Neck Surg 2023; 168: 571-592 DOI: 10.1002/ohn.302.
- 13 Nathan CO, Asarkar AA, Entezami P. et al. Current management of xerostomia in head and neck cancer patients. Am J Otolaryngol 2023; 44: 103867 DOI: 10.1016/j.amjoto.2023.103867.
- 14 Verdonck-de Leeuw I, Dawson C, Licitra L. et al. European Head and Neck Society recommendations for head and neck cancer survivorship care. Oral Oncol 2022; 133: 106047 DOI: 10.1016/j.oraloncology.2022.106047.
- 15 Melissant HC, Jansen F, Eerenstein SE. et al. Body image distress in head and neck cancer patients: what are we looking at?. Support Care Cancer 2021; 29: 2161-2169 DOI: 10.1007/s00520-020-05725-1.
- 16 Rathod S, Livergant J, Klein J, Witterick I, Ringash J. A systematic review of quality of life in head and neck cancer treated with surgery with or without adjuvant treatment. Oral Oncol 2015; 51: 888-900 DOI: 10.1016/j.oraloncology.2015.07.002.
- 17 Hammerlid E, Silander E, Hornestam L, Sullivan M. Health-related quality of life three years after diagnosis of head and neck cancer-a longitudinal study. Head Neck 23: 113-125
- 18 Liao LJ, Hsu WL, Lo WC. et al. Health-related quality of life and utility in head and neck cancer survivors. BMC Cancer 2019; 19: 425 DOI: 10.1186/s12885-019-5614-4.
- 19 Osazuwa-Peters N, Simpson MC, Zhao L. et al. Suicide risk among cancer survivors: Head and neck versus other cancers. Cancer 2018; 124: 4072-4079 DOI: 10.1002/cncr.31675.
- 20 Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH. A review of cancer immunotherapy: from the past, to the present, to the future. Curr Oncol 2020; 27: S87-S97 DOI: 10.3747/co.27.5223.
- 21 Kucerova P, Cervinkova M. Spontaneous regression of tumour and the role of microbial infection--possibilities for cancer treatment. Anticancer Drugs 2016; 27: 269-277 DOI: 10.1097/CAD.0000000000000337.
- 22 MacKie RM, Reid R, Junor B. Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med 2003; 348: 567-568 DOI: 10.1056/NEJM200302063480620.
- 23 Simard EP, Pfeiffer RM, Engels EA. Cumulative incidence of cancer among individuals with acquired immunodeficiency syndrome in the United States. Cancer 2011; 117: 1089-1096 DOI: 10.1002/cncr.25547.
- 24 Haas OA. Primary Immunodeficiency and Cancer Predisposition Revisited: Embedding Two Closely Related Concepts Into an Integrative Conceptual Framework. Front Immunol 2019; 9: 3136 Published 2019 Feb 12 DOI: 10.3389/fimmu.2018.03136.
- 25 Uppaluri R, Dunn GP, Lewis JS. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in head and neck cancers. Cancer Immun 2008; 8: 16 Published 2008 Dec 4
- 26 Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3: 991-998 DOI: 10.1038/ni1102-991.
- 27 Margolin KA. Interleukin-2 in the treatment of renal cancer. Semin Oncol 2000; 27: 194-203
- 28 Ahmed S, Rai KR. Interferon in the treatment of hairy-cell leukemia. Best Pract Res Clin Haematol 2003; 16: 69-81 DOI: 10.1016/s1521-6926(02)00084-1.
- 29 Rosenberg SA, Yang JC, Sherry RM. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 2011; 17: 4550-4557 DOI: 10.1158/1078-0432.CCR-11-0116.
- 30 Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade [published correction appears in Cell. 2022 Feb 3;185(3):576]. Cell 2021; 184: 5309-5337 DOI: 10.1016/j.cell.2021.09.020.
- 31 Diabetic Retinopathy Clinical Research Network. Wells JA, Glassman AR. et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med 2015; 372: 1193-1203 DOI: 10.1056/NEJMoa1602252.
- 32 Burtness B, Harrington KJ, Greil R. et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study [published correction appears in Lancet. 2020 Jan 25;395(10220):272] [published correction appears in Lancet. 2020 Feb 22;395(10224):564] [published correction appears in Lancet. 2021 Jun 12;397(10291):2252]. Lancet 2019; 394: 1915-1928 DOI: 10.1016/S0140-6736(19)32591-7.
- 33 Ruffin AT, Li H, Vujanovic L, Zandberg DP, Ferris RL, Bruno TC. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer 2023; 23: 173-188 DOI: 10.1038/s41568-022-00531-9.
- 34 Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl RM. T cell responses: naive to memory and everything in between. Adv Physiol Educ 2013; 37: 273-283 DOI: 10.1152/advan.00066.2013.
- 35 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57-70 DOI: 10.1016/s0092-8674(00)81683-9.
- 36 Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004; 21: 137-148 DOI: 10.1016/j.immuni.2004.07.017.
- 37 Ferris RL. Immunology and Immunotherapy of Head and Neck Cancer. J Clin Oncol 2015; 33: 3293-3304 DOI: 10.1200/JCO.2015.61.1509.
- 38 Kürten CH. et al Stimulierende und inhibierende Signalwege der APZ- und T-Zell-Interaktion sowie Einfluss von TLR-Agonisten auf APZ. HNO 2020; 68, no. 12: 916-921 DOI: 10.1007/s00106-020-00960-8.
- 39 Chen SD, Mellman I. Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity 2013; 39 (1): 1-10 DOI: 10.1016/j.immuni.2013.07.012.
- 40 Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E. The who's who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol 2013; 43: 2797-2809 DOI: 10.1002/eji.201343751.
- 41 Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol 2014; 14: 24-35 DOI: 10.1038/nri3567.
- 42 Demers KR, Reuter MA, Betts MR. CD8(+) T-cell effector function and transcriptional regulation during HIV pathogenesis. Immunol Rev 2013; 254: 190-206 DOI: 10.1111/imr.12069.
- 43 Lawrence MS, Stojanov P, Polak P. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499: 214-218 DOI: 10.1038/nature12213.
- 44 Ogino T, Shigyo H, Ishii H. et al. HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res 2006; 66: 9281-9289 DOI: 10.1158/0008-5472.CAN-06-0488.
- 45 Ferris RL, Whiteside TL, Ferrone S. Immune escape associated with functional defects in antigen-processing machinery in head and neck cancer. Clin Cancer Res 2006; 12: 3890-3895 DOI: 10.1158/1078-0432.CCR-05-2750.
- 46 Ferris RL, Hunt JL, Ferrone S. Human leukocyte antigen (HLA) class I defects in head and neck cancer: molecular mechanisms and clinical significance. Immunol Res 2005; 33: 113-133 DOI: 10.1385/IR:33:2:113.
- 47 Concha-Benavente F, Srivastava R, Ferrone S, Ferris RL. Immunological and clinical significance of HLA class I antigen processing machinery component defects in malignant cells. Oral Oncol 2016; 58: 52-58 DOI: 10.1016/j.oraloncology.2016.05.008.
- 48 Gillison ML, Akagi K, Xiao W. et al. Human papillomavirus and the landscape of secondary genetic alterations in oral cancers. Genome Res 2019; 29: 1-17 DOI: 10.1101/gr.241141.118.
- 49 Leibowitz MS, Andrade Filho PA, Ferrone S, Ferris RL. Deficiency of activated STAT1 in head and neck cancer cells mediates TAP1-dependent escape from cytotoxic T lymphocytes. Cancer Immunol Immunother 2011; 60: 525-535 DOI: 10.1007/s00262-010-0961-7.
- 50 Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26: 677-704 DOI: 10.1146/annurev.immunol.26.021607.090331.
- 51 Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 2015; 15: 486-499 DOI: 10.1038/nri3862.
- 52 Parsa AT, Waldron JS, Panner A. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 2007; 13: 84-88 DOI: 10.1038/nm1517.
- 53 Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol 2015; 36: 265-276 DOI: 10.1016/j.it.2015.02.008.
- 54 Barber DL, Wherry EJ, Masopust D. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439: 682-687 DOI: 10.1038/nature04444.
- 55 Hirano F, Kaneko K, Tamura H. et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 2005; 65: 1089-1096
- 56 Blackburn SD, Shin H, Freeman GJ, Wherry EJ. Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade. Proc Natl Acad Sci U S A 2008; 105: 15016-15021 DOI: 10.1073/pnas.0801497105.
- 57 Paley MA, Kroy DC, Odorizzi PM. et al. Progenitor and terminal subsets of CD8+T cells cooperate to contain chronic viral infection. Science 2012; 338: 1220-1225 DOI: 10.1126/science.1229620.
- 58 Blackburn SD, Shin H, Haining WN. et al. Coregulation of CD8+T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 2009; 10: 29-37 DOI: 10.1038/ni.1679.
- 59 Kansy BA, Concha-Benavente F, Srivastava RM. et al. PD-1 Status in CD8+T Cells Associates with Survival and Anti-PD-1 Therapeutic Outcomes in Head and Neck Cancer. Cancer Res 2017; 77: 6353-6364 DOI: 10.1158/0008-5472.CAN-16-3167.
- 60 Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 2017; 14: 717-734 DOI: 10.1038/nrclinonc.2017.101.
- 61 Wing JB, Tanaka A, Sakaguchi S. Human FOXP3+Regulatory T Cell Heterogeneity and Function in Autoimmunity and Cancer. Immunity 2019; 50: 302-316 DOI: 10.1016/j.immuni.2019.01.020.
- 62 Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res 2017; 27: 109-118 DOI: 10.1038/cr.2016.151.
- 63 Miyara M, Yoshioka Y, Kitoh A. et al. Functional delineation and differentiation dynamics of human CD4+T cells expressing the FoxP3 transcription factor. Immunity 2009; 30: 899-911 DOI: 10.1016/j.immuni.2009.03.019.
- 64 Saito T, Nishikawa H, Wada H. et al. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 2016; 22: 679-684 DOI: 10.1038/nm.4086.
- 65 Liu S, Li S, Hai J. et al. Targeting HER2 Aberrations in Non-Small Cell Lung Cancer with Osimertinib. Clin Cancer Res 2018; 24: 2594-2604 DOI: 10.1158/1078-0432.CCR-17-1350.
- 66 Schuler PJ, Schilling B, Harasymczuk M. et al. Phenotypic and functional characteristics of CD4+CD39+FOXP3+and CD4+CD39+FOXP3neg T-cell subsets in cancer patients. Eur J Immunol 2012; 42: 1876-1885 DOI: 10.1002/eji.201142347.
- 67 Granot Z, Jablonska J. Distinct Functions of Neutrophil in Cancer and Its Regulation. Mediators Inflamm 2015; 2015: 701067 DOI: 10.1155/2015/701067.
- 68 Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model [published correction appears in J Clin Invest. 2010 Nov 1;120(11):4163]. J Clin Invest 2010; 120: 1151-1164 DOI: 10.1172/JCI37223.
- 69 Jablonska J, Lang S, Sionov RV, Granot Z. The regulation of pre-metastatic niche formation by neutrophils. Oncotarget 2017; 8: 112132-112144 Published 2017 Nov 30 DOI: 10.18632/oncotarget.22792.
- 70 Pylaeva E, Lang S, Jablonska J. The Essential Role of Type I Interferons in Differentiation and Activation of Tumor-Associated Neutrophils. Front Immunol. 2016; 7: 629 Published 2016 Dec 21 DOI: 10.3389/fimmu.2016.00629.
- 71 Andzinski L, Kasnitz N, Stahnke S. et al. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer 2016; 138: 1982-1993 DOI: 10.1002/ijc.29945.
- 72 Andzinski L, Wu CF, Lienenklaus S, Kröger A, Weiss S, Jablonska J. Delayed apoptosis of tumor associated neutrophils in the absence of endogenous IFN-β. Int J Cancer 2015; 136: 572-583 DOI: 10.1002/ijc.28957.
- 73 Jablonska J, Wu CF, Andzinski L, Leschner S, Weiss S. CXCR2-mediated tumor-associated neutrophil recruitment is regulated by IFN-β. Int J Cancer 2014; 134: 1346-1358 DOI: 10.1002/ijc.28551.
- 74 Hussain B, Xie Y, Jabeen U. et al Activation of STING Based on Its Structural Features. Front Immunol 2022; 13: 808607 Published 2022 Jul 19 DOI: 10.3389/fimmu.2022.878959.
- 75 Fridlender ZG, Albelda SM. Tumor-associated neutrophils: friend or foe. Carcinogenesis 2012; 33: 949-955 DOI: 10.1093/carcin/bgs123.
- 76 Pylaeva E, Korschunow G, Spyra I. et al. During early stages of cancer, neutrophils initiate anti-tumor immune responses in tumor-draining lymph nodes. Cell Rep 2022; 40: 111171 DOI: 10.1016/j.celrep.2022.111171.
- 77 Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 2018; 18: 35-45 DOI: 10.1038/nri.2017.76.
- 78 Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc 2018; 13: 599-604 DOI: 10.1038/nprot.2017.149.
- 79 Cillo AR, Kürten CHL, Tabib T. et al. Immune Landscape of Viral- and Carcinogen-Driven Head and Neck Cancer. Immunity 2020; 52: 183-199 DOI: 10.1016/j.immuni.2019.11.014.
- 80 Ruffin AT, Cillo AR, Tabib T. et al B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma. Nat Commun 2021; 12: 3349 Published 2021 Jun 7 DOI: 10.1038/s41467-021-23355-x.
- 81 Kürten CHL, Kulkarni A, Cillo AR. et al Investigating immune and non-immune cell interactions in head and neck tumors by single-cell RNA sequencing. Nat Commun 2021; 12: 7338 Published 2021 Dec 17 DOI: 10.1038/s41467-021-27619-4.
- 82 Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 2014; 740: 364-378 DOI: 10.1016/j.ejphar.2014.07.025.
- 83 Marron TU, Galsky MD, Taouli B. et al. Neoadjuvant clinical trials provide a window of opportunity for cancer drug discovery [published correction appears in Nat Med. 2022 Aug;28(8):1723]. Nat Med 2022; 28: 626-629 DOI: 10.1038/s41591-022-01681-x.
- 84 Zhong LP, Zhang CP, Ren GX. et al. Randomized phase III trial of induction chemotherapy with docetaxel, cisplatin, and fluorouracil followed by surgery versus up-front surgery in locally advanced resectable oral squamous cell carcinoma. J Clin Oncol 2013; 31: 744-751 DOI: 10.1200/JCO.2012.43.8820.
- 85 MACH-NC Collaborative Group. Pignon JP, le Maître A, Maillard E, Bourhis J. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol 2009; 92: 4-14 DOI: 10.1016/j.radonc.2009.04.014.
- 86 Ferris RL, Blumenschein G, Fayette J. et al. Nivolumab vs investigator's choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol 2018; 81: 45-51 DOI: 10.1016/j.oraloncology.2018.04.008.
- 87 Harrington KJ, Burtness B, Greil R. et al. Pembrolizumab With or Without Chemotherapy in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: Updated Results of the Phase III KEYNOTE-048 Study. J Clin Oncol 2023; 41: 790-802 DOI: 10.1200/JCO.21.02508.
- 88 Mehra R, Seiwert TY, Gupta S. et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: pooled analyses after long-term follow-up in KEYNOTE-012. Br J Cancer 2018; 119: 153-159 DOI: 10.1038/s41416-018-0131-9.
- 89 Harrington KJ, Ferris RL, Blumenschein G. et al. Nivolumab versus standard, single-agent therapy of investigator's choice in recurrent or metastatic squamous cell carcinoma of the head and neck (CheckMate 141): health-related quality-of-life results from a randomised, phase 3 trial. Lancet Oncol 2017; 18: 1104-1115 DOI: 10.1016/S1470-2045(17)30421-7.
- 90 Cohen R, Bennouna J, Meurisse A. et al. RECIST and iRECIST criteria for the evaluation of nivolumab plus ipilimumab in patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the GERCOR NIPICOL phase II study. J Immunother Cancer 2020; 8: e001499 DOI: 10.1093/annonc/mdy507.
- 91 Cohen EEW, Soulières D, Le Tourneau C. et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study [published correction appears in Lancet. 2019 Jan 12;393(10167):132]. Lancet 2019; 393: 156-167 DOI: 10.1016/S0140-6736(18)31999-8.
- 92 Burtness B, Rischin D, Greil R. et al. Pembrolizumab Alone or With Chemotherapy for Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma in KEYNOTE-048: Subgroup Analysis by Programmed Death Ligand-1 Combined Positive Score. J Clin Oncol 2022; 40: 2321-2332 DOI: 10.1200/JCO.21.02198.
- 93 Lee NY, Ferris RL, Psyrri A. et al. Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol 2021; 22: 450-462 DOI: 10.1016/S1470-2045(20)30737-3.
- 94 Antonia SJ, Villegas A, Daniel D. et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N Engl J Med 2017; 377: 1919-1929 DOI: 10.1056/NEJMoa1709937.
- 95 Saddawi-Konefka R, O'Farrell A, Faraji F. et al Lymphatic-preserving treatment sequencing with immune checkpoint inhibition unleashes cDC1-dependent antitumor immunity in HNSCC. Nat Commun 2022; 13: 4298 Published 2022 Jul 25 DOI: 10.1038/s41467-022-31941-w.
- 96 Darragh LB, Gadwa J, Pham TT. et al Elective nodal irradiation mitigates local and systemic immunity generated by combination radiation and immunotherapy in head and neck tumors. Nat Commun 2022; 13: 7015 Published 2022 Nov 16 DOI: 10.1038/s41467-022-34676-w.
- 97 Sridharan V, Margalit DN, Lynch SA. et al. Definitive chemoradiation alters the immunologic landscape and immune checkpoints in head and neck cancer. Br J Cancer 2016; 115: 252-260 DOI: 10.1038/bjc.2016.166.
- 98 Forde PM, Chaft JE, Smith KN. et al. Neoadjuvant PD-1 Blockade in Resectable Lung Cancer [published correction appears in N Engl J Med. 2018 Nov 29;379(22):2185]. N Engl J Med 2018; 378: 1976-1986 DOI: 10.1056/NEJMoa1716078.
- 99 Forde PM, Spicer J, Lu S. et al. Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer. N Engl J Med 2022; 386: 1973-1985 DOI: 10.1056/NEJMoa2202170.
- 100 Cercek A, Lumish M, Sinopoli J. et al. PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. N Engl J Med 2022; 386: 2363-2376 DOI: 10.1056/NEJMoa2201445.
- 101 Uppaluri R, Campbell KM, Egloff AM. et al. Neoadjuvant and Adjuvant Pembrolizumab in Resectable Locally Advanced, Human Papillomavirus-Unrelated Head and Neck Cancer: A Multicenter, Phase II Trial [published correction appears in Clin Cancer Res. 2021 Jan 1;27(1):357]. Clin Cancer Res 2020; 26: 5140-5152 DOI: 10.1158/1078-0432.CCR-20-1695.
- 102 Schoenfeld JD, Hanna GJ, Jo VY. et al. Neoadjuvant Nivolumab or Nivolumab Plus Ipilimumab in Untreated Oral Cavity Squamous Cell Carcinoma: A Phase 2 Open-Label Randomized Clinical Trial. JAMA Oncol 2020; 6: 1563-1570 DOI: 10.1001/jamaoncol.2020.2955.
- 103 Tetzlaff MT, Messina JL, Stein JE. et al. Pathological assessment of resection specimens after neoadjuvant therapy for metastatic melanoma. Ann Oncol 2018; 29: 1861-1868 DOI: 10.1093/annonc/mdy226.
- 104 Vos JL, Elbers JBW, Krijgsman O. et al Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma. Nat Commun 2021; 12: 7348 Published 2021 Dec 22 DOI: 10.1038/s41467-021-26472-9.
- 105 Knochelmann HM, Horton JD, Liu S. et al Neoadjuvant presurgical PD-1 inhibition in oral cavity squamous cell carcinoma. Cell Rep Med 2021; 2: 100426 Published 2021 Oct 19 DOI: 10.1016/j.xcrm.2021.100426.
- 106 Wise-Draper TM, Gulati S, Palackdharry S. et al. Phase II Clinical Trial of Neoadjuvant and Adjuvant Pembrolizumab in Resectable Local-Regionally Advanced Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2022; 28: 1345-1352 DOI: 10.1158/1078-0432.CCR-21-3351.
- 107 Ferris RL, Spanos WC, Leidner R. et al. Neoadjuvant nivolumab for patients with resectable HPV-positive and HPV-negative squamous cell carcinomas of the head and neck in the CheckMate 358 trial [published correction appears in J Immunother Cancer. 2021 Aug;9(8):]. J Immunother Cancer 2021; 9: e002568 DOI: 10.1136/jitc-2021-002568.
- 108 Ferrarotto R, Bell D, Rubin ML. et al. Impact of Neoadjuvant Durvalumab with or without Tremelimumab on CD8+Tumor Lymphocyte Density, Safety, and Efficacy in Patients with Oropharynx Cancer: CIAO Trial Results. Clin Cancer Res 2020; 26: 3211-3219 DOI: 10.1158/1078-0432.CCR-19-3977.
- 109 Hanna GJ, O'Neill A, Shin KY. et al. Neoadjuvant and Adjuvant Nivolumab and Lirilumab in Patients with Recurrent, Resectable Squamous Cell Carcinoma of the Head and Neck. Clin Cancer Res 2022; 28: 468-478 DOI: 10.1158/1078-0432.CCR-21-2635.
- 110 Luginbuhl AJ, Johnson JM, Harshyne LA. et al. Tadalafil Enhances Immune Signatures in Response to Neoadjuvant Nivolumab in Resectable Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2022; 28: 915-927 DOI: 10.1158/1078-0432.CCR-21-1816.
- 111 Oliva M, Chepeha D, Araujo DV. et al. Antitumor immune effects of preoperative sitravatinib and nivolumab in oral cavity cancer: SNOW window-of-opportunity study. J Immunother Cancer 2021; 9: e003476 DOI: 10.1136/jitc-2021-003476.
- 112 Ju WT, Xia RH, Zhu DW. et al A pilot study of neoadjuvant combination of anti-PD-1 camrelizumab and VEGFR2 inhibitor apatinib for locally advanced resectable oral squamous cell carcinoma. Nat Commun 2022; 13: 5378 Published 2022 Sep 14 DOI: 10.1038/s41467-022-33080-8.
- 113 Redman JM, Friedman J, Robbins Y. et al Enhanced neoepitope-specific immunity following neoadjuvant PD-L1 and TGF-β blockade in HPV-unrelated head and neck cancer. J Clin Invest 2023; 133: e172059 Published 2023 Jun 1 DOI: 10.1172/JCI172059.
- 114 Zhang Z, Wu B, Peng G. et al. Neoadjuvant Chemoimmunotherapy for the Treatment of Locally Advanced Head and Neck Squamous Cell Carcinoma: A Single-Arm Phase 2 Clinical Trial. Clin Cancer Res 2022; 28: 3268-3276 DOI: 10.1158/1078-0432.CCR-22-0666.
- 115 Huang Y, Sun J, Li J. et al Neoadjuvant immunochemotherapy for locally advanced resectable oral squamous cell carcinoma: a prospective single-arm trial (Illuminate Trial). Int J Surg 2023; 109: 2220-2227 Published 2023 Aug 1 DOI: 10.1097/JS9.0000000000000489.
- 116 Huang X, Liu Q, Zhong G. et al. Neoadjuvant toripalimab combined with gemcitabine and cisplatin in resectable locally advanced head and neck squamous cell carcinoma (NeoTGP01): An open label, single-arm, phase Ib clinical trial. J Exp Clin Cancer Res 41: 300 2022; DOI: 10.1186/s13046-022-02510-2.
- 117 Wang AX, Ong XJ, D'Souza C, Neeson PJ, Zhu JJ. Combining chemotherapy with CAR-T cell therapy in treating solid tumors. Front Immunol 2023; 14: 1140541 Published 2023 Mar 6 DOI: 10.3389/fimmu.2023.1189752.
- 118 Leidner R, Crittenden M, Young K. et al. Neoadjuvant immunoradiotherapy results in high rate of complete pathological response and clinical to pathological downstaging in locally advanced head and neck squamous cell carcinoma. J Immunother Cancer 2021; 9: e002485 DOI: 10.1136/jitc-2021-002485.
- 119 Masarwy R, Kampel L, Horowitz G, Gutfeld O, Muhanna N. Neoadjuvant PD-1/PD-L1 Inhibitors for Resectable Head and Neck Cancer: A Systematic Review and Meta-analysis. JAMA Otolaryngol Head Neck Surg 2021; 147: 871-878 DOI: 10.1001/jamaoto.2021.2191.
- 120 Vos JL, Zuur CL, Smit LA. et al. [18F]FDG-PET accurately identifies pathological response early upon neoadjuvant immune checkpoint blockade in head and neck squamous cell carcinoma. Eur J Nucl Med Mol Imaging 2022; 49: 2010-2022 DOI: 10.1007/s00259-021-05610-x.
- 121 Hellmann MD, Chaft JE, William WN. et al. Pathological response after neoadjuvant chemotherapy in resectable non-small-cell lung cancers: proposal for the use of major pathological response as a surrogate endpoint. Lancet Oncol 2014; 15: e42-e50 DOI: 10.1016/S1470-2045(13)70334-6.
- 122 Cottrell TR, Thompson ED, Forde PM. et al. Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma: a proposal for quantitative immune-related pathologic response criteria (irPRC). Ann Oncol 2018; 29: 1853-1860 DOI: 10.1093/annonc/mdy218.
- 123 Qu Y, Emoto K, Eguchi T. et al. Pathologic Assessment After Neoadjuvant Chemotherapy for NSCLC: Importance and Implications of Distinguishing Adenocarcinoma From Squamous Cell Carcinoma. J Thorac Oncol 2019; 14: 482-493 DOI: 10.1016/j.jtho.2018.11.017.
- 124 Stein JE, Lipson EJ, Cottrell TR. et al. Pan-Tumor Pathologic Scoring of Response to PD-(L)1 Blockade. Clin Cancer Res 2020; 26: 545-551 DOI: 10.1158/1078-0432.CCR-19-2379.
- 125 Merlino DJ, Johnson JM, Tuluc M. et al Discordant Responses Between Primary Head and Neck Tumors and Nodal Metastases Treated With Neoadjuvant Nivolumab: Correlation of Radiographic and Pathologic Treatment Effect. Front Oncol 2020; 10: 566315 Published 2020 Dec 2 DOI: 10.3389/fonc.2020.566315.
- 126 Chen S, Yang Y, Wang R, Fang J. Neoadjuvant PD-1/PD-L1 inhibitors combined with chemotherapy had a higher ORR than mono-immunotherapy in untreated HNSCC: Meta-analysis. Oral Oncol 2023; 145: 106479 DOI: 10.1016/j.oraloncology.2023.106479.