CC BY-NC-ND 4.0 · Klin Monbl Augenheilkd 2025; 242(01): 62-69
DOI: 10.1055/a-2184-4260
Klinische Studie

Digital Pupillometry and Centroid Shift Changes in Dominant and Nondominant Eyes

Digitale Pupillometrie und Zentroidverschiebungsänderungen in dominanten und nicht dominanten Augen
Wenhao Xu
1   Ophthalmology, Fuyang Peopleʼs Hospital of Anhui Medical University, Fuyang, China
2   Ophthalmology, Enshi Huiyi Ophthalmology Hospital, Enshi, China
3   Ophthalmology, Yanbian University Hospital, Yanji, China
,
Fali Jia
3   Ophthalmology, Yanbian University Hospital, Yanji, China
,
Jingting Liu
4   Xiangya School of Medicine, Central South University, Changsha, China
,
Jiahao Li
1   Ophthalmology, Fuyang Peopleʼs Hospital of Anhui Medical University, Fuyang, China
,
Jian Zhao
3   Ophthalmology, Yanbian University Hospital, Yanji, China
,
Shuhua Lin
5   Ophthalmology, Ningde Municipal Hospital of Ningde Normal University, Ningde, China
,
Yujie Jia
6   Ophthalmology, Zaozhuang Municipal Hospital, Zaozhuang, China
,
Yingjun Li
1   Ophthalmology, Fuyang Peopleʼs Hospital of Anhui Medical University, Fuyang, China
› Author Affiliations

Abstract

Purpose To investigate the differences between dominant and nondominant eyes in a predominantly young patient population by analyzing the angle kappa, pupil size, and center position in dominant and nondominant eyes.

Methods A total of 126 young college students (252 eyes) with myopia who underwent femtosecond laser-combined LASIK were randomly selected. Ocular dominance was determined using the hole-in-card test. The WaveLight Allegro Topolyzer (WaveLight Laser Technologies AG, Erlangen, Germany) was used to measure the pupil size and center position. The offset between the pupil center and the coaxially sighted corneal light reflex (P-Dist) of the patients was recorded by the x- and y-axis eyeball tracking adjustment program of the WaveLight Eagle Vision EX500 excimer laser system (Wavelight GmbH). The patientʼs vision (uncorrected distance visual acuity [UDVA], best-corrected visual acuity (BCVA), and refractive power (spherical equivalent, SE) were observed preoperatively, 1 week, 4 weeks, and 12 weeks postoperatively, and a quality of vision (QoV) questionnaire was completed.

Results Ocular dominance occurred predominantly in the right eye [right vs. left: (178) 70.63% vs. (74) 29.37%; p < 0.001]. The P-Dist was 0.202 ± 0.095 mm in the dominant eye and 0.215 ± 0.103 mm in the nondominant eye (p = 0.021). The horizontal pupil shift was − 0.07 ± 0.14 mm in dominant eyes and 0.01 ± 0.13 mm in nondominant eyes (p = 0.001) (the temporal displacement of the dominant eye under mesopic conditions). The SE was negatively correlated with the P-Dist (r = − 0.223, p = 0.012 for the dominant eye and r = − 0.199, p = 0.025 for the nondominant eye). At 12 weeks postoperatively, the safety index (postoperative BDVA/preoperative BDVA) of the dominant and nondominant eyes was 1.20 (1.00, 1.22) and 1.20 (1.00, 1.20), respectively, and the efficacy index (postoperative UDVA/preoperative BDVA) was 1.00 (1.00, 1.20) and 1.00 (1.00, 1.20), respectively; the proportion of residual SE within ± 0.50 D was 98 and 100%, respectively.

Conclusions This study found that ocular dominance occurred predominantly in the right eye. The pupil size change was larger in the dominant eye. The angle kappa of the dominant eye was smaller than that of the nondominant eye and the pupil center of the dominant eye was slightly shifted to the temporal side under mesopic conditions. The correction of myopia in the dominant and nondominant eyes exhibits good safety, efficacy, and predictability in the short term after surgery, and has good subjective visual quality performance after correction. We suggest adjusting the angle kappa percentage in the dominant eye to be lower than that of the nondominant eye in individualized corneal refractive surgery in order to find the ablation center closest to the visual axis.

Zusammenfassung

Ziel Untersuchung der Unterschiede zwischen dominanten und nicht dominanten Augen in einer überwiegend jungen Patientenpopulation durch Analyse des Kappa-Winkels, der Pupillengröße und der Zentrumsposition in dominanten und nicht dominanten Augen.

Methoden Insgesamt wurden 126 junge Studenten (252 Augen) mit Myopie, die sich einer Femtosekundenlaser-kombinierten LASIK-Operation unterzogen hatten, zufällig ausgewählt. Die okulare Dominanz wurde mit dem Loch-in-Karte-Test bestimmt. Der WaveLight Allegro Topolyzer (WaveLight Laser Technologies AG, Erlangen, Deutschland) wurde zur Messung der Pupillengröße und Zentrumsposition verwendet. Der Versatz zwischen dem Pupillenzentrum und dem koaxial gesichteten Hornhautlichtreflex (P-Dist) der Patienten wurde durch das x- und y-Achsen-Augapfel-Tracking-Anpassungsprogramm des WaveLight Eagle Vision EX500 Excimer-Lasersystems (Wavelight GmbH) aufgezeichnet. Die Sehkraft des Patienten (unkorrigierte Fernsehschärfe [UDVA], bestkorrigierte Sehschärfe [BCVA] und refraktive Leistung [sphärisches Äquivalent, SE]) wurden präoperativ, 1 Woche, 4 Wochen und 12 Wochen postoperativ beobachtet, und ein Fragebogen zur Sehqualität (QoV) wurde ausgefüllt.

Ergebnisse Die okulare Dominanz trat überwiegend im rechten Auge auf [rechts vs. links: (178) 70,63% vs. (74) 29,37%; p < 0,001]. Der P-Dist betrug 0,202 ± 0,095 mm im dominanten Auge und 0,215 ± 0,103 mm im nicht dominanten Auge (p = 0,021). Die horizontale Pupillenverschiebung betrug − 0,07 ± 0,14 mm bei dominanten Augen und 0,01 ± 0,13 mm bei nicht dominanten Augen (p = 0,001) (die temporale Verschiebung des dominanten Auges unter mesopischen Bedingungen). Das SE korrelierte negativ mit dem P-Dist (r = − 0,223, p = 0,012 für das dominante Auge und r = − 0,199, p = 0,025 für das nicht dominante Auge). Nach 12 Wochen postoperativ betrug der Sicherheitsindex (postoperative BDVA/präoperative BDVA) der dominanten und nicht dominanten Augen jeweils 1,20 (1,00, 1,22) bzw. 1,20 (1,00, 1,20), und der Effektivitätsindex (postoperative UDVA/präoperative BDVA) betrug jeweils 1,00 (1,00, 1,20) bzw. 1,00 (1,00, 1,20); der Anteil des Rest-SE innerhalb von ± 0.50 dpt betrug jeweils 98% bzw.100%.

Schlussfolgerungen Diese Studie fand heraus, dass die okulare Dominanz überwiegend im rechten Auge auftrat. Die Pupillengrößenänderung war im dominanten Auge größer. Der Kappa-Winkel des dominanten Auges war kleiner als der des nicht dominanten Auges und das Pupillenzentrum des dominanten Auges war unter mesopischen Bedingungen leicht zur temporalen Seite verschoben. Die Korrektur der Myopie in den dominanten und nicht dominanten Augen zeigt nach der Operation eine gute Sicherheit, Wirksamkeit und Vorhersagbarkeit auf kurze Sicht und hat nach der Korrektur eine gute subjektive Sehqualitätsleistung. Wir schlagen vor, den Kappa-Winkel-Prozentsatz im dominanten Auge niedriger als den des nicht dominanten Auges in der individualisierten hornhautrefraktiven Chirurgie anzupassen, um das Ablationszentrum zu finden, das am nächsten zur Sehachse liegt.

Conclusion Box

Already known:

  • Pupil changes in dominant eyes are slightly different from those in nondominant eyes.

  • Accurate positioning of the excimer laser cutting center for dominant and nondominant eyes is crucial.

  • Further research is needed to study angle kappa compensation and wavefront aberrations of dominant and nondominant eyes.

Newly described:

  • Under mesopic conditions, the pupil center of the dominant eye is slightly shifted to the temporal side.

  • In individualized corneal refractive surgery, adjusting the angle kappa percentage in the nondominant eye to be higher than that of the dominant eye may be beneficial for UDVA, predictability, effectiveness, safety, and quality of vision.

  • Further research is needed to study angle kappa compensation and wavefront aberrations of dominant and nondominant eyes, and the digital correspondence between personalized ablation of various modes remains to be further explored.



Publication History

Received: 14 May 2023

Accepted: 19 September 2023

Accepted Manuscript online:
29 September 2023

Article published online:
27 November 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ding Y, Naber M, Gayet S. et al. Assessing the generalizability of eye dominance across binocular rivalry, onset rivalry, and continuous flash suppression. J Vis 2018; 18: 6
  • 2 Kwon JW, Bae JM, Kim JS. et al. Asymmetry of the macular structure is associated with ocular dominance. Can J Ophthalmol 2019; 54: 237-241
  • 3 Jehangir N, Mahmood SM, Mannis T. et al. Ocular dominance, coexistent retinal disease, and refractive errors in patients with cataract surgery. Curr Opin Ophthalmol 2016; 27: 38-44
  • 4 Frantz MG, Kast RJ, Dorton HM. et al. Nogo Receptor 1 Limits Ocular Dominance Plasticity but not Turnover of Axonal Boutons in a Model of Amblyopia. Cereb Cortex 2016; 26: 1975-1985
  • 5 AlHarkan DH, Khan AO. False amblyopia prediction in strabismic patients by fixation preference testing correlates with contralateral ocular dominance. J AAPOS 2014; 18: 453-456
  • 6 Liu Z, Zhao Y, Sun S. et al. Effect of preoperative pupil offset on corneal higher-order aberrations after femtosecond laser-assisted in situ keratomileusis. BMC Ophthalmol 2023; 23 (01) 247
  • 7 Rocha-de-Lossada C, Sánchez-González JM, Borroni D. et al. Chord Mu (µ) and Chord Alpha (α) Length Changes in Fuchs Endothelial Corneal Dystrophy before and after Descemet Membrane Endothelial Keratoplasty (DMEK) Surgery. J Clin Med 2021; 10: 4844
  • 8 Manzanera S, Prieto PM, Benito A. et al. Location of achromatizing pupil position and first Purkinje reflection in a normal population. Invest Ophthalmol Vis Sci 2015; 56: 962-966
  • 9 Wildenmann U, Schaeffel F. Variations of pupil centration and their effects on video eye tracking. Ophthalmic Physiol Opt 2013; 33: 634-641
  • 10 Pande M, Hillman JS. Optical zone centration in keratorefractive surgery. Entrance pupil center, visual axis, coaxially sighted corneal reflex, or geometric corneal center?. Ophthalmology 1993; 100: 1230-1237
  • 11 Qi Y, Lin J, Leng L. et al. Role of angle κ in visual quality in patients with a trifocal diffractive intraocular lens. J Cataract Refract Surg 2018; 44: 949-954
  • 12 Fu Y, Kou J, Chen D. et al. Influence of angle kappa and angle alpha on visual quality after implantation of multifocal intraocular lenses. J Cataract Refract Surg 2019; 45: 1258-1264
  • 13 Chang JS, Law AK, Ng JC. et al. Comparison of refractive and visual outcomes with centration points 80 % and 100 % from pupil center toward the coaxially sighted corneal light reflex. J Cataract Refract Surg 2016; 42: 412-419
  • 14 Rodríguez-Vallejo M, Piñero DP, Fernández J. Avoiding misinterpretations of Kappa angle for clinical research studies with Pentacam. J Optom 2019; 12: 71-73
  • 15 Kanellopoulos AJ, Asimellis G. LASIK ablation centration: an objective digitized assessment and comparison between two generations of an excimer laser. J Refract Surg 2015; 31: 164-169
  • 16 Oishi A, Tobimatsu S, Arakawa K. et al. Ocular dominancy in conjugate eye movements at reading distance. Neurosci Res 2005; 52: 263-268
  • 17 Goldschmidt E, Lyhne N, Lam CS. Ocular anisometropia and laterality. Acta Ophthalmol Scand 2004; 82: 175-178
  • 18 Mansour AM, Sbeity ZM, Kassak KM. Hand dominance, eye laterality and refraction. Acta Ophthalmol Scand 2003; 81: 82-83
  • 19 Chia A, Jaurigue A, Gazzard G. et al. Ocular dominance, laterality, and refraction in Singaporean children. Invest Ophthalmol Vis Sci 2007; 48: 3533-3536
  • 20 Ibi K. Characteristics of dynamic accommodation responses: comparison between the dominant and nondominant eyes. Ophthalmic Physiol Opt 1997; 17: 44-54
  • 21 Yeo JH, Moon NJ, Lee JK. Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography. Korean J Ophthalmol 2017; 31: 257-262
  • 22 Teeuw J, Brouwer RM, Guimarães JPOFT. et al. Genetic and environmental influences on functional connectivity within and between canonical cortical resting-state networks throughout adolescent development in boys and girls. Neuroimage 2019; 202: 116073
  • 23 Kovas Y, Haworth CM, Dale PS. et al. The genetic and environmental origins of learning abilities and disabilities in the early school years. Monogr Soc Res Child Dev 2007; 72: vii 1–144
  • 24 Cheng CY, Yen MY, Lin HY. et al. Association of ocular dominance and anisometropic myopia. Invest Ophthalmol Vis Sci 2004; 45: 2856-2860
  • 25 Reinstein DZ, Gobbe M, Archer TJ. Coaxially sighted corneal light reflex versus entrance pupil center centration of moderate to high hyperopic corneal ablations in eyes with small and large angle kappa. J Refract Surg 2013; 29: 518-525
  • 26 Buehren T. The subject-fixated coaxially sighted corneal light reflex: a clinical marker for centration of refractive treatments and devices. Am J Ophthalmol 2015; 159: 611-612
  • 27 Chan CC, Boxer Wachler BS. Centration analysis of ablation over the coaxial corneal light reflex for hyperopic LASIK. J Refract Surg 2006; 22: 467-471
  • 28 Zhang J, Wang Y, Chen X. et al. Clinical outcomes of corneal refractive surgery comparing centration on the corneal vertex with the pupil center: a meta-analysis. Int Ophthalmol 2020; 40: 3555-3563
  • 29 Lopes-Ferreira D, Fernandes P, Queirós A. et al. Combined Effect of Ocular and Multifocal Contact Lens Induced Aberrations on Visual Performance: Center-Distance Versus Center-Near Design. Eye Contact Lens 2018; 44 (Suppl. 01) S131-S137