Klin Monbl Augenheilkd
DOI: 10.1055/a-2184-9492
Klinische Studie

Intravitreal Injections: Improving Sustainability by Reducing Clinical Waste

Article in several languages: deutsch | English
1   Oxford Eye Hospital, Oxford University, Oxford, United Kingdom
2   Nuffield Laboratory of Ophthalmology, University of Oxford Nuffield Department of Clinical Neurosciences, Oxford, United Kingdom
3   Klinik für Augenheilkunde, Universitätsklinikums Hamburg-Eppendorf, Hamburg, Deutschland
4   Klinik für Augenheilkunde, Universitätsklinikum Bonn, Deutschland
,
Maximilian Hammer
5   Universitäts-Augenklinik Heidelberg, Heidelberg, Deutschland
,
Nicolas Feltgen
6   Augenklinik, Universitätsspital Basel, Schweiz
,
Laurenz Pauleikhoff
3   Klinik für Augenheilkunde, Universitätsklinikums Hamburg-Eppendorf, Hamburg, Deutschland
,
Ariel Yuhan Ong
1   Oxford Eye Hospital, Oxford University, Oxford, United Kingdom
,
Gerd Geerling
7   Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Deutschland
,
Martin S. Spitzer
3   Klinik für Augenheilkunde, Universitätsklinikums Hamburg-Eppendorf, Hamburg, Deutschland
,
1   Oxford Eye Hospital, Oxford University, Oxford, United Kingdom
2   Nuffield Laboratory of Ophthalmology, University of Oxford Nuffield Department of Clinical Neurosciences, Oxford, United Kingdom
8   Universitäts-Augenklinik, Klinikum rechts der Isar, Technische Universität München (TUM), München, Deutschland
› Author Affiliations

Abstract

Background Intravitreal injections are one of the most commonly performed ophthalmic procedures. It is estimated that over 1 million intravitreal injections are performed in Germany annually. The aim of this study was to quantify the waste and carbon footprint associated with single-use injection sets, and to establish a waste reduction strategy.

Material and Methods The clinical waste and associated carbon footprint from standard disposable injection sets used by tertiary referral centres in Germany (n = 6) and the United Kingdom (n = 2) were assessed. The safety of performing intravitreal injections with a minimalistic material-sparing approach was evaluated.

Results The average weight of an injection set (and hence the waste generated from each injection) was 165 g. On average, each injection set comprised 145 g (88%) of plastic, 2.1 g (1.3%) of metal, 4.3 g (2.6%) of paper, and 12.9 g (7.8%) of gauze/swabs. The production of such injection sets was extrapolated to a CO2 equivalent of 752.6 tonnes (t), and the incineration of the resulting waste to a CO2 equivalent of 301.7 t. For 1 million injections, this equates to 145.2 t of plastic, 2.1 t of metal, 4.3 t of paper, and 12.9 t of gauze/swabs. A material-sparing approach can reduce injection set-associated waste by 99% without necessarily compromising patient safety.

Conclusion A resource-saving approach to intravitreal injections can minimise the generation of clinical waste and its associated carbon footprint, thereby supporting sustainability.



Publication History

Received: 27 June 2023

Accepted: 22 September 2023

Article published online:
04 April 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 Watts N, Adger WN, Agnolucci P. et al. Health and climate change: policy responses to protect public health. Lancet 2015; 386: 1861-1914
  • 2 Watts N, Amann M, Arnell N. et al. The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. Lancet 2021; 397: 129-170
  • 3 Steffen W, Richardson K, Rockstrom J. et al. Sustainability. Planetary boundaries: guiding human development on a changing planet. Science 2015; 347: 1259855
  • 4 Lenzen M, Malik A, Li M. et al. The environmental footprint of health care: a global assessment. Lancet Planet Health 2020; 4: e271-e279
  • 5 Ostertag K, Bratan T, Gandenberger C, Hüsing B, Pfaff M. Ressourcenschonung im Gesundheitssektor – Erschließung von Synergien zwischen den Politikfeldern Ressourcenschonung und Gesundheit. Januar 2021. Umweltbundesamt. Im Internet (Stand: 09.10.2023): https://www.umweltbundesamt.de/publikationen/ressourcenschonung-im-gesundheitssektor
  • 6 Health Care Without Harm. Health care climate footprint report. 2019. Im Internet (Stand: 09.10.2023): https://noharm-global.org/documents/health-care-climate-footprint-report
  • 7 Birtel J, Heimann H, Hoerauf H. et al. [Sustainability in ophthalmology: Adaptation to the climate crisis and mitigation]. Ophthalmologie 2022; 119: 567-576
  • 8 Buchan JC, Thiel CL, Steyn A. et al. Addressing the environmental sustainability of eye health-care delivery: a scoping review. Lancet Planet Health 2022; 6: e524-e534
  • 9 Tauber J, Chinwuba I, Kleyn D. et al. Quantification of the Cost and Potential Environmental Effects of Unused Pharmaceutical Products in Cataract Surgery. JAMA Ophthalmol 2019; 137: 1156-1163
  • 10 Thiel CL, Schehlein E, Ravilla T. et al. Cataract surgery and environmental sustainability: Waste and lifecycle assessment of phacoemulsification at a private healthcare facility. J Cataract Refract Surg 2017; 43: 1391-1398
  • 11 Le HG, Ehrlich JR, Venkatesh R. et al. A Sustainable Model For Delivering High-Quality, Efficient Cataract Surgery In Southern India. Health Aff (Millwood) 2016; 35: 1783-1790
  • 12 Thiel CL, Cassels-Brown A, Goel H. et al. Utilizing off-the-shelf LCA methods to develop a ‘triple bottom line’ auditing tool for global cataract surgical services. Resources, Conservation & Recycling 2020; 158: 104805
  • 13 Goel H, Wemyss TA, Harris T. et al. Improving productivity, costs and environmental impact in International Eye Health Services: using the ‘Eyefficiency’ cataract surgical services auditing tool to assess the value of cataract surgical services. BMJ Open Ophthalmol 2021; 6: e000642
  • 14 Venkatesh R, van Landingham SW, Khodifad AM. et al. Carbon footprint and cost-effectiveness of cataract surgery. Curr Opin Ophthalmol 2016; 27: 82-88
  • 15 Morris DS, Wright T, Somner JE. et al. The carbon footprint of cataract surgery. Eye (Lond) 2013; 27: 495-501
  • 16 Fößleitner S, Czypionka T, Rösler D. Evaluierung der Versorgung mit intravitrealen operativen Medikamenteninjektionen (IVOM) in Österreich. Projektbericht, April 2022. Im Internet (Stand: 09.10.2023): https://irihs.ihs.ac.at/id/eprint/6159/1/ihs-report-2022-foessleitner-czypionka-roesler-evaluierung-ivom-oesterreich.pdf
  • 17 The Royal College of Ophthalmologists. Atlas of variation in risk factors and healthcare for vision in England. 2021. Im Internet (Stand: 09.10.2023): https://www.rcophth.ac.uk/news-views/vision-atlas-england/
  • 18 Power B, Brady R, Connell P. Analyzing the Carbon Footprint of an Intravitreal Injection. J Ophthalmic Vis Res 2021; 16: 367-376
  • 19 Department for Energy Security and Net Zero, Department for Environment Food and Rural Affairs. Greenhouse gas reporting: conversion factors 2023. Published 7 June 2023. Im Internet (Stand: 09.10.2023): https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2023
  • 20 Tailor R, Beasley R, Yang Y. et al. Evaluation of patientsʼ experiences at different stages of the intravitreal injection procedure – what can be improved?. Clin Ophthalmol 2011; 5: 1499-1502
  • 21 Rahimy E, Fineman MS, Regillo CD. et al. Speculum versus Bimanual Lid Retraction during Intravitreal Injection. Ophthalmology 2015; 122: 1729-1730
  • 22 Raevis JJ, Karl MD, Parendo AM. et al. Eyelid retraction discomfort with cotton-tipped applicator, unimanual and speculum intravitreal injection techniques: Eyelid retraction technique randomized comparison trial (Eyelid RETRACT). Indian J Ophthalmol 2020; 68: 1593-1595
  • 23 Green-Simms AE, Ekdawi NS, Bakri SJ. Survey of intravitreal injection techniques among retinal specialists in the United States. Am J Ophthalmol 2011; 151: 329-332
  • 24 Chaturvedi R, Wannamaker KW, Riviere PJ. et al. Real-World Trends in Intravitreal Injection Practices among American Retina Specialists. Ophthalmol Retina 2019; 3: 656-662
  • 25 Grzybowski A, Told R, Sacu S. et al. 2018 Update on Intravitreal Injections: Euretina Expert Consensus Recommendations. Ophthalmologica 2018; 239: 181-193
  • 26 The Royal College of Ophthalmologists. Ophthalmic Service Guidance. Intravitreal injection therapy. Im Internet (Stand: 09.10.2023): https://curriculum.rcophth.ac.uk/wp-content/uploads/2018/02/Intravitreal-Injection-Therapy-August-2018-2.pdf
  • 27 McCannel CA, Flynn JT, Cunningham ET. Updated Guidelines for Intravitreal Injection. 2015. Im Internet (Stand: 09.10.2023): https://www.reviewofophthalmology.com/article/updated-guidelines-for-intravitreal-injection
  • 28 Fineman MS, Hsu J, Spirn MJ. et al. Bimanual assisted eyelid retraction technique for intravitreal injections. Retina 2013; 33: 1968-1970
  • 29 Munro M, Williams GR, Ells A. et al. Lid splinting eyelid retraction technique: a minimised sterile approach for intravitreal injections. Br J Ophthalmol 2018; 102: 1254-1258
  • 30 McCannel CA. Meta-analysis of endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents: causative organisms and possible prevention strategies. Retina 2011; 31: 654-661
  • 31 Moshfeghi AA, Rosenfeld PJ, Flynn jr. HW. et al. Endophthalmitis after intravitreal vascular [corrected] endothelial growth factor antagonists: a six-year experience at a university referral center. Retina 2011; 31: 662-668
  • 32 Neubauer J, Gklavas K, Kortum F. et al. Legal obligation in the general population: face mask influence on endophthalmitis after intravitreal injection. Graefes Arch Clin Exp Ophthalmol 2023; 261: 97-102
  • 33 Schuster M, Richter H, Pecher S. et al. Ecological Sustainability in Anaesthesiology and Intensive Care Medicine. Anästh Intensivmed 2020; 61: 329-338
  • 34 Birtel J, Tischler M, Fassbach M. et al. [Alliance of Young Doctors – Shaping the future of the healthcare system]. Ophthalmologe 2020; 117: 945-946
  • 35 Deutsche Ophthalmologische Gesellschaft, Berufsverband der Augenärzte Deutschlands e. V.. [Position paper and recommendations for action for ecologically sustainable ophthalmology: Statement of the German Society of Ophthalmology (DOG) and the German Professional Association of Ophthalmologists (BVA)]. Ophthalmologie 2023; 120: 52-68
  • 36 Dickhoff A, Grah C, Schulz CM, Weimann E. Klimagerechte Gesundheitseinrichtungen – Rahmenwerk. 24. Juni 2021. Im Internet (Stand: 09.10.2023): https://www.klimawandel-gesundheit.de/klug-veroeffentlicht-rahmenwerk-fuer-klimaneutrale-gesundheitseinrichtungen/
  • 37 NHS England. Delivering a ‚Net Zero‘ National Health Service. 1 October 2020. Im Internet (Stand: 09.10.2023): https://www.england.nhs.uk/greenernhs/publication/delivering-a-net-zero-national-health-service/
  • 38 Guenther EM, Hoppe H. Merging Limited Perspectives A Synopsis of Measurement Approaches and Theories of the Relationship Between Corporate Environmental and Financial Performance. J Ind Ecol 2014; 18: 689-707
  • 39 McGain F, Naylor C. Environmental sustainability in hospitals – a systematic review and research agenda. J Health Serv Res Policy 2014; 19: 245-252
  • 40 Seifert C, Koep L, Wolf P. et al. Life cycle assessment as decision support tool for environmental management in hospitals: A literature review. Health Care Manage Rev 2021; 46: 12-24