Subscribe to RSS
DOI: 10.1055/a-2185-0581
Chromium-Promoted Dearomative (Deutero)Hydrocyanoalkylation of (Hetero)Arenes Using Simple Alkylnitriles
This work is supported by the National Natural Science Foundation of China (22271251) and the Fundamental Research Funds for the Central Universities (226-2023-00016, 226-2023-00115, and 226-2022-00224).
Abstract
Herein, a general strategy for the regioselective dearomative 1,2-hydrocyanoalkylation of chromium-bound (hetero)arenes with simple alkylnitriles as pronucleophiles was disclosed, providing rapid access to 1,3-cyclohexadienes possessing useful alkylnitrile groups. The versatility of this methodology further enabled a selective dearomative deuteration reaction. Finally, synthetic applications of the method in the formal synthesis of natural products, including erysotramidine, demethoxyerythratidinone, and morphine, were demonstrated.
Key words
chromium - dearomatization - hydrocyanoalkylation - deuteration - alkylnitrile - cyclohexadieneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2185-0581.
- Supporting Information
Publication History
Received: 21 August 2023
Accepted after revision: 02 October 2023
Accepted Manuscript online:
02 October 2023
Article published online:
06 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a The Chemistry of the Cyano Group . Rappoport Z. Wiley; London: 1970
- 1b Fleming FF. Nat. Prod. Rep. 1999; 16: 597
- 1c Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
- 2a López R, Palomo C. Angew. Chem. Int. Ed. 2015; 54: 13170
- 2b Kumagai N, Shibasaki M. Chem. Lett. 2019; 48: 1322
- 2c Nakao Y. Chem. Rev. 2021; 121: 327
- 3a Kawato Y, Kumagai N, Shibasaki M. Chem. Commun. 2013; 49: 11227
- 3b Sureshkumar D, Ganesh V, Kumagai N, Shibasaki M. Chem. Eur. J. 2014; 20: 15723
- 3c Lin S, Kawato Y, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2015; 54: 5183
- 3d Tamura K, Kumagai N, Shibasaki M. Eur. J. Org. Chem. 2015; 3026
- 3e Lin S, Kumagai N, Shibasaki M. Org. Biomol. Chem. 2016; 14: 9725
- 3f Zhang H, Zhu C. Org. Chem. Front. 2017; 4: 1272
- 3g Balaji PV, Brewitz L, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2019; 58: 2644
- 3h Saito A, Kumagai N, Shibasaki M. Org. Lett. 2019; 21: 8187
- 3i Tak RK, Noda H, Shibasaki M. Asian J. Org. Chem. 2020; 9: 57
- 3j Balaji PV, Li Z, Saito A, Kumagai N, Shibasaki M. Chem. Eur. J. 2020; 26: 15524
- 3k Saito A, Adachi S, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2021; 60: 8739
- 3l Jin S, Chen F, Qian P, Cheng J. Org. Biomol. Chem. 2021; 19: 2416
- 4a Asymmetric Dearomatization Reactions . You S.-L. Wiley-VCH; Weinheim: 2016
- 4b Wu W.-T, Zhang L, You S.-L. Chem. Soc. Rev. 2016; 45: 1570
- 4c Wertjes WC, Southgate EH, Sarlah D. Chem. Soc. Rev. 2018; 47: 7996
- 4d Wiesenfeldt MP, Nairoukh Z, Dalton T, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 10460
- 4e Huck CJ, Sarlah D. Chem 2020; 6: 1589
- 5a Rosillo M, Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2007; 36: 1589
- 5b McGrew GI, Temaismithi J, Carroll PJ, Walsh PJ. Angew. Chem. Int. Ed. 2010; 49: 5541
- 5c Zhang J, Stanciu C, Wang B, Hussain MM, Da C.-S, Carroll PJ, Dreher SD, Walsh PJ. J. Am. Chem. Soc. 2011; 133: 20552
- 5d McGrew GI, Stanciu C, Zhang J, Carroll JP, Dreher SD, Walsh PJ. Angew. Chem. Int. Ed. 2012; 51: 11510
- 5e Mao J, Zhang J, Jiang H, Bellomo A, Zhang M, Gao Z, Dreher SD, Walsh PJ. Angew. Chem. Int. Ed. 2016; 55: 2526
- 5f Shirakawa S, Yamamoto K, Maruoka K. Angew. Chem. Int. Ed. 2015; 54: 838
- 5g Kubota N, Segawa Y, Itami K. J. Am. Chem. Soc. 2015; 137: 1356
- 5h Bigler R, Aggarwal VK. Angew. Chem. Int. Ed. 2018; 57: 1082
- 5i Ricci P, Krämer K, Cambeiro XC, Larrosa I. J. Am. Chem. Soc. 2013; 135: 13258
- 5j Ricci P, Krämer K, Larrosa I. J. Am. Chem. Soc. 2014; 136: 18082
- 5k Whitaker D, Burés J, Larrosa I. J. Am. Chem. Soc. 2016; 138: 8384
- 5l Panigrahi A, Whitaker D, Vitorica-Yrezabal IJ, Larrosa I. ACS Catal. 2020; 10: 2100
- 6 Pape AR, Kaliappan KP, Kündig EP. Chem. Rev. 2000; 100: 2917
- 7a Semmelhack MF, Hall HT. Jr, Yoshifuji M. J. Am. Chem. Soc. 1976; 98: 6387
- 7b Semmelhack MF, Harrison JJ, Thebtaranonth Y. J. Org. Chem. 1979; 44: 3275
- 7c Semmelhack MF, Hall HT. Jr, Farina R, Yoshifuji M, Clark G, Bargar T, Hirotsu K, Clardy J. J. Am. Chem. Soc. 1979; 101: 3535
- 8 Schmalz H.-GB, Gotov B, Böttcher A. Top. Organomet. Chem. 2004; 7: 157
- 9a Wang M.-Y, Wu C.-J, Zeng W.-L, Jiang X, Li W. Angew. Chem. Int. Ed. 2022; 61: e202210312
- 9b Qiu J.-Y, Zeng W.-L, Xie H, Wang M.-Y, Li W. Angew. Chem. Int. Ed. 2023; 62: e202218961
- 9c Li Z.-J, Wang M.-Y, Li C.-Q, Zeng W.-L, Li W. Chem. Eur. J. 2023; 29: e202300776
- 10a Gant TG. J. Med. Chem. 2014; 57: 3595
- 10b Dean M, Sung VW. Drug Des., Dev. Ther. 2018; 12: 313
- 10c Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Chem. Rev. 2022; 122: 6634
- 11 Smith JA, Wilson KB, Sonstrom RE, Kelleher PJ, Welch KD, Pert EK, Westendorff KS, Dickie DA, Wang X, Pate BH, Harman WD. Nature 2020; 581: 288
- 12a Gao S, Tu YQ, Hu X, Wang S, Hua R, Jiang Y, Zhao Y, Fan X, Zhang S. Org. Lett. 2006; 8: 2373
- 12b Liang J, Chen J, Liu J, Li L, Zhang H. Chem. Commun. 2010; 46: 3666
- 13 Li Q, Zhang H. Chin. J. Org. Chem. 2017; 37: 1629
- 14 Ichiki M, Tanimoto H, Miwa S, Saito R, Sato T, Chida N. Chem. Eur. J. 2013; 19: 264
- 15 Typical Procedure for the Dearomative Hydrocyanoalkylation Under N2 atmosphere, t-BuOK (0.90 mmol, 3.0 equiv.) was added to the solution of (η6-1,4-dimethoxybenzene)Cr(CO)3 (0.30 mmol, 1.0 equiv.) in CH3CN (1.5 mL) and THF (1.5 mL) at –45 °C. After stirring for 4 h, the reaction was quenched with CF3CO2H (1.5 mmol, 5.0 equiv.) and stirred for another 1 h. The mixture was concentrated and purified by preparative TLC using PE/EtOAc (10: 1) as the eluent to give a pale yellow liquid 8; 48.3 mg, 90% yield. 1H NMR (500 MHz, CDCl3, connectivities were confirmed by gCOSY experiments): δ = 4.93 (d, J = 6.5 Hz, 1 H), 4.85 (dd, J = 7.0, 1.5 Hz, 1 H), 3.55 (d, J = 2.0 Hz, 6 H), 2.74–2.68 (m, 1 H), 2.68–2.63 (m, 1 H), 2.52 (dd, J = 16.5, 5.0 Hz, 1 H), 2.46 (dd, J = 16.5, 8.5 Hz, 1 H), 2.34–2.25 (m, 1 H). 13C NMR (126 MHz, CDCl3): δ = 151.7, 150.4, 118.7, 92.8, 90.8, 55.1, 54.9, 35.4, 32.5, 19.2. HRMS (APCI): m/z calcd [C10H13NO2 + H]+: 180.1019; found: 180.1018.
For recent works, see:
For selected reviews on arene dearomatizations, see:
For selected examples using (η6-arene)Cr(CO)3 reagents, see: