Subscribe to RSS
DOI: 10.1055/a-2185-4286
Visible-Light-Mediated Intramolecular Lactonization of Benzylic C(sp3)–H Bonds Promoted by DDQ and tert-Butyl Nitrite
We are grateful for financial support from the National Natural Science Foundation of China (22178321 and 22278372), and the Science and Technology Program of Shaoxing (2022B43007) for this research work.
Abstract
A functionalization of benzylic C(sp3)–H bonds was established through a mild metal-free intramolecular lactonization protocol in the presence of DDQ/tert-butyl nitrite as photocatalysts, allowing practical and low-cost access to a series of phthalide products in moderate to excellent yields. Compared with many existing methodologies, this visible-light-driven process exhibits an excellent substrate scope and fascinating features, including the formation of water as the sole byproduct, an abundant and green energy source, commercially available catalysts, and room-temperature reaction. Finally, detailed mechanistic investigations clearly revealed the role of the photocatalysts and molecular oxygen.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2185-4286.
- Supporting Information
Publication History
Received: 11 August 2023
Accepted after revision: 04 October 2023
Accepted Manuscript online:
04 October 2023
Article published online:
03 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Lee JM, Chang S. Tetrahedron Lett. 2006; 47: 1375
- 1b Lee JM, Park EJ, Cho SH, Chang S. J. Am. Chem. Soc. 2008; 130: 7824
- 1c Lam FK, Au-Yeung TT.-L, Kwong FY, Zhou Z, Wong KY, Chan AS. C. Angew. Chem. Int. Ed. 2008; 47: 1280
- 1d Li Y, Bao W. Adv. Synth. Catal. 2009; 351: 865
- 1e Młochowski J, Wójtowicz-Młochowska H. Molecules 2015; 20: 10205
- 1f Lu X, Xiao B, Shang R, Liu L. Chin. Chem. Lett. 2016; 27: 305
- 1g Liu Y, Wang C, Xue D, Xiao M, Liu J, Li C, Xiao J. Chem. Eur. J. 2017; 23: 3062
- 2a Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
- 2b Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
- 2c Rao W.-H, Shi B.-F. Org. Chem. Front. 2016; 3: 1028
- 2d Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
- 2e Chen Z, Rong M.-Y, Nie J, Zhu X.-F, Shi B.-F, Ma J.-A. Chem. Soc. Rev. 2019; 48: 4921
- 2f Zhang Q, Shi B.-F. Chin. J. Chem. 2019; 37: 647
- 2g Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
- 3a Siegbahn PE. M. J. Phys. Chem. 1995; 99: 12723
- 3b Jones WD, Feher FJ. Acc. Chem. Res. 1989; 22: 91
- 3c Oliva M, Coppola GA, Van de Eycken EV, Sharma UK. Adv. Synth. Catal. 2021; 363: 1810
- 4a Pandey G, Pal S, Laha R. Angew. Chem. Int. Ed. 2013; 52: 5146
- 4b Pandey G, Laha R. Angew. Chem. Int. Ed. 2015; 54: 14875
- 4c Luo S, Li L, Yang Q, Jia Z. Synthesis 2018; 50: 2924
- 4d Im H, Kang D, Choi S, Shin S, Hong S. Org. Lett. 2018; 20: 7437
- 4e Zhang Y, Schilling W, Das S. ChemSusChem 2019; 12: 2898
- 4f Duhamel T, Muñiz K. Chem. Commun. 2019; 55: 933
- 4g Bian C, Singh AK, Niu L, Yi H, Lei A. Asian J. Org. Chem. 2017; 6: 386
- 4h Gkizis PL. Eur. J. Org. Chem. 2022; e202201139
- 4i Liu C, Liu H, Zheng X, Chen S, Lai Q, Zheng C, Huang M, Cai K, Cai Z, Cai S. ACS Catal. 2022; 12: 1375
- 4j Cai S, Xu Y, Chen D, Li L, Chen Q, Huang M, Weng W. Org. Lett. 2016; 18: 2990
- 5a Rathwell K, Brimble MA. Synthesis 2007; 643
- 5b Xie ZP, Zhang HY, Li FC, Liu B, Yang SX, Wang HP, Pu Y, Chen Y, Qin S. Chin. Chem. Lett. 2012; 23: 941
- 5c Mola AD, Palombi L, Massa A. Curr. Org. Chem. 2012; 16: 2302
- 5d Karmakar R, Pahari P, Mal D. Chem. Rev. 2014; 114: 6213
- 5e Marco-Contelles J, Zhang Y. J. Med. Chem. 2020; 63: 12485
- 6 Bentley R. Chem. Rev. 2000; 100: 3801
- 7 Mahendar L, Satyanarayana G. J. Org. Chem. 2015; 80: 7089
- 8a Hayat S, Atta-ur-Rahman Atta-ur-Rahman, Choudhary MI, Khan MK, Bayer E. Tetrahedron Lett. 2001; 42: 1647
- 8b Li T, Xiang C, Zhang B, Yan J. Helv. Chim. Acta 2014; 97: 854
- 8c Dohi T, Takenaga N, Goto A, Maruyama A, Kita Y. Org. Lett. 2007; 9: 3129
- 8d Uyanik M, Yasui T, Ishihara K. Bioorg. Med. Chem. Lett. 2009; 19: 3848
- 8e Nozawa-Kumada K, Kurosu S, Shigeno M, Kondo Y. Asian J. Org. Chem. 2019; 8: 1080
- 8f Triandafillidi I, Raftopoulou M, Savvidou A, Kokotos CG. ChemCatChem 2017; 9: 4120
- 9a Rayabarapu DK, Chang HT, Cheng CH. Chem. Eur. J. 2004; 10: 2991
- 9b Kuriyama M, Ishiyama N, Shimazawa R, Shirai R, Onomura O. J. Org. Chem. 2009; 74: 9210
- 9c Ye Z, Lv G, Wang W, Zhang M, Cheng J. Angew. Chem. Int. Ed. 2010; 49: 3671
- 9d Karthikeyan J, Parthasarathy K, Cheng CH. Chem. Commun. 2011; 47: 10461
- 9e Sathyamoorthi S, Du Bois J. Org. Lett. 2016; 18: 6308
- 9f Lian Y, Bergman RG, Ellman JA. Chem. Sci. 2012; 3: 3088
- 9g Novák P, Correa A, Gallardo-Donaire J, Martin R. Angew. Chem. Int. Ed. 2011; 50: 12236
- 9h Carlos AM. M, Stieler R, Lüdtke DS. Org. Biomol. Chem. 2019; 17: 283
- 9i Nozawa-Kumada K, Ono K, Kurosu S, Shigeno M, Kondo Y. Org. Biomol. Chem. 2022; 20: 5948
- 10a Geng P, Tang Y, Pan G, Wang W, Hu J, Cai Y. Green Chem. 2019; 21: 6116
- 10b Liu H, Liu C, Chen S, Lai Q, Lin Y, Cai Z, Huang M, Cai S. Green Chem. 2021; 23: 8212
- 10c Li S, Su M, Sun J, Hu K, Jin J. Org. Lett. 2021; 23: 5842
- 10d Dhungana RK, Granados A, Ciccone V, Martin RT, Majhi J, Sharique M, Gutierrez O, Molander GA. ACS Catal. 2022; 12: 15750
- 10e Triandafillidi I, Kokotou MG, Kokotos CG. Org. Lett. 2018; 20: 36
- 10f Chen R, Wang K.-K, Wang Z.-Y, Miao C, Wang D, Zhang A.-A, Liu L. J. Org. Chem. 2019; 84: 16068
- 10g Triandafillidi I, Savvidou A, Kokotos CG. Org. Lett. 2019; 21: 5533
- 10h Fuentes-Pantoja FJ, Cordero-Vargas A. Eur. J. Org. Chem. 2022; e202200464
- 10i Chen S, Lai Q, Liu C, Liu H, Huang M, Cai S. Sci. China Chem. 2022; 65: 1526
- 11a Zhang S, Li L, Wang H, Li Q, Liu W, Xu K, Zeng C. Org. Lett. 2018; 20: 252
- 11b Hong JE, Yoon J, Baek W, Kim K, Kwak JH, Park Y. Org. Lett. 2023; 25: 298
- 12a Rusch F, Schober J.-C, Brasholz M. ChemCatChem 2016; 8: 2881
- 12b Song C, Yi H, Dou B, Li Y, Singh AK, Lei A. Chem. Commun. 2017; 53: 3689
- 12c Chuskit D, Chaudhary R, Venugopalan P, König B, Natarajan P. Org. Chem. Front. 2018; 5: 3553
- 12d Alsharif MA, Raja QA, Majeed NA, Jassas RS, Alsimaree AA, Sadiq A, Naeem N, Mughal EU, Alsantali RI, Moussa Z, Ahmed SA. RSC Adv. 2021; 11: 29826
- 12e Natarajan P, Chuskit D, Priya Priya. Org. Chem. Front. 2022; 9: 1395
- 13a Pan D, Wang Y, Li M, Hu X, Sun N, Jin L, Hu B, Shen Z. Synlett 2018; 30: 218
- 13b Wang Y, Wang S, Chen B, Li M, Hu X, Hu B, Jin L, Sun N, Shen Z. Synlett 2019; 31: 261
- 13c Liu Z, Wu W, Yang J, Li M, Hu X, Hu B, Jin L, Sun N, Shen Z. Tetrahedron 2022; 119: 132853
- 13d Li T, Yang J, Yin X, Shi J, Cao Q, Hu M, Xu X, Li M, Shen Z. Org. Biomol. Chem. 2022; 20: 8756
- 14 Pan D, Pan Z, Hu Z, Li M, Hu X, Jin L, Sun N, Hu B, Shen Z. Eur. J. Org. Chem. 2019; 2019: 5650
- 15 Phthalides 2a–ac; General Procedure A Schlenk tube was charged with MeCN (3 mL), and the appropriate substrate 1 (0.5 mmol), DDQ (20 mol%), and 5 Å MS (50 mg) were added. The tube was flushed with O2 then TBN (20 mol%, 12 μL) was quickly injected into the tube from a microsyringe, and the tube was then capped. The mixture was stirred for 0.5 h and then the tube was placed a dark box and illuminated with a blue LED (450–455 nm) at rt for 12 h. When the reaction was completed (GC), the light source device was removed. The resulting mixture was concentrated on a rotary evaporator, and the residue was purified by column chromatography (silica gel, PE–EtOAc). 3-Phenyl-2-benzofuran-1(3H)-one (2a) White solid; mp 120–121 °C. 1H NMR (400 MHz, CDCl3, TMS): δ = 7.96 (d, J = 7.6 Hz, 1 H), 7.67–7.62 (m, 1 H), 7.58–7.52 (m, 1 H), 7.40–7.35 (m, 3 H), 7.33 (d, J = 7.6 Hz, 1 H), 7.30–7.25 (m, 2 H), 6.40 (s, 1 H). 13C NMR (100 MHz, CDCl3, TMS): δ = 170.6, 149.8, 136.5, 134.4, 129.5, 129.4, 129.1, 127.1, 125.7, 125.6, 123.0, 82.8. MS (EI): m/z (%) 210.23 [M+] (40), 104.11 (100).
For selected examples, see:
For selected examples, see:
For selected examples: