Subscribe to RSS
DOI: 10.1055/a-2186-3557
Mechanisms of Lipid Droplet Accumulation in Steatotic Liver Diseases
Abstract
The steatotic diseases of metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), and chronic hepatitis C (HCV) account for the majority of liver disease prevalence, morbidity, and mortality worldwide. While these diseases have distinct pathogenic and clinical features, dysregulated lipid droplet (LD) organelle biology represents a convergence of pathogenesis in all three. With increasing understanding of hepatocyte LD biology, we now understand the roles of LD proteins involved in these diseases but also how genetics modulate LD biology to either exacerbate or protect against the phenotypes associated with steatotic liver diseases. Here, we review the history of the LD organelle and its biogenesis and catabolism. We also review how this organelle is critical not only for the steatotic phenotype of liver diseases but also for their advanced phenotypes. Finally, we summarize the latest attempts and challenges of leveraging LD biology for therapeutic gain in steatotic diseases. In conclusion, the study of dysregulated LD biology may lead to novel therapeutics for the prevention of disease progression in the highly prevalent steatotic liver diseases of MASLD, ALD, and HCV.
Keywords
steatotic liver disease - lipid droplet - lipid droplet proteins - perilipins - MASLD - alcohol-associated liver disease - hepatitis CPublication History
Accepted Manuscript online:
05 October 2023
Article published online:
06 November 2023
© 2023. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Chi X, Ogunsade OO, Zhou Z. et al. Lipid droplet is an ancient and inheritable organelle in bacteria. bioRxiv 2020; DOI: 10.1101/2020.05.18.103093.
- 2 Martin S, Parton RG. Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 2006; 7 (05) 373-378
- 3 Baselli G, Valenti L. Beyond fat accumulation, NAFLD genetics converges on lipid droplet biology. J Lipid Res 2019; 60 (01) 7-8
- 4 Wilfling F, Wang H, Haas JT. et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 2013; 24 (04) 384-399
- 5 Stone SJ, Levin MC, Zhou P, Han J, Walther TC, Farese Jr RV. The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J Biol Chem 2009; 284 (08) 5352-5361
- 6 Xu Y, Du X, Turner N, Brown AJ, Yang H. Enhanced acyl-CoA:cholesterol acyltransferase activity increases cholesterol levels on the lipid droplet surface and impairs adipocyte function. J Biol Chem 2019; 294 (50) 19306-19321
- 7 Long T, Sun Y, Hassan A, Qi X, Li X. Structure of nevanimibe-bound tetrameric human ACAT1. Nature 2020; 581 (7808) 339-343
- 8 Santinho A, Salo VT, Chorlay A. et al. Membrane curvature catalyzes lipid droplet assembly. Curr Biol 2020; 30 (13) 2481.e6-2494.e6
- 9 Zoni V, Khaddaj R, Campomanes P, Thiam AR, Schneiter R, Vanni S. Pre-existing bilayer stresses modulate triglyceride accumulation in the ER versus lipid droplets. eLife 2021; 10: 10
- 10 Kim S, Li C, Farese Jr RV, Walther TC, Voth GA. Key factors governing initial stages of lipid droplet formation. J Phys Chem B 2022; 126 (02) 453-462
- 11 Choudhary V, Ojha N, Golden A, Prinz WA. A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J Cell Biol 2015; 211 (02) 261-271
- 12 Arlt H, Sui X, Folger B. et al. Seipin forms a flexible cage at lipid droplet formation sites. Nat Struct Mol Biol 2022; 29 (03) 194-202
- 13 Fei W, Shui G, Gaeta B. et al. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 2008; 180 (03) 473-482
- 14 Wang CW, Miao YH, Chang YS. Control of lipid droplet size in budding yeast requires the collaboration between Fld1 and Ldb16. J Cell Sci 2014; 127 (Pt 6): 1214-1228
- 15 Lukmantara I, Chen F, Mak HY. et al. PI(3)P and DFCP1 regulate the biogenesis of lipid droplets. Mol Biol Cell 2022; 33 (14) ar131
- 16 Szymanski KM, Binns D, Bartz R. et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci U S A 2007; 104 (52) 20890-20895
- 17 Cartwright BR, Binns DD, Hilton CL, Han S, Gao Q, Goodman JM. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol Biol Cell 2015; 26 (04) 726-739
- 18 Correnti J, Lin C, Brettschneider J. et al. Liver-specific ceramide reduction alleviates steatosis and insulin resistance in alcohol-fed mice. J Lipid Res 2020; 61 (07) 983-994
- 19 Williams B, Correnti J, Oranu A. et al. A novel role for ceramide synthase 6 in mouse and human alcoholic steatosis. FASEB J 2018; 32 (01) 130-142
- 20 BasuRay S, Wang Y, Smagris E, Cohen JC, Hobbs HH. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc Natl Acad Sci U S A 2019; 116 (19) 9521-9526
- 21 Trépo E, Gustot T, Degré D. et al. Common polymorphism in the PNPLA3/adiponutrin gene confers higher risk of cirrhosis and liver damage in alcoholic liver disease. J Hepatol 2011; 55 (04) 906-912
- 22 Stickel F, Buch S, Lau K. et al. Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in caucasians. Hepatology 2011; 53 (01) 86-95
- 23 Tian C, Stokowski RP, Kershenobich D, Ballinger DG, Hinds DA. Variant in PNPLA3 is associated with alcoholic liver disease. Nat Genet 2010; 42 (01) 21-23
- 24 Dongiovanni P, Donati B, Fares R. et al. PNPLA3 I148M polymorphism and progressive liver disease. World J Gastroenterol 2013; 19 (41) 6969-6978
- 25 Carr RM, Patel RT, Rao V. et al. Reduction of TIP47 improves hepatic steatosis and glucose homeostasis in mice. Am J Physiol Regul Integr Comp Physiol 2012; 302 (08) R996-R1003
- 26 Carr RM, Peralta G, Yin X, Ahima RS. Absence of perilipin 2 prevents hepatic steatosis, glucose intolerance and ceramide accumulation in alcohol-fed mice. PLoS One 2014; 9 (05) e97118
- 27 Varela GM, Antwi DA, Dhir R. et al. Inhibition of ADRP prevents diet-induced insulin resistance. Am J Physiol Gastrointest Liver Physiol 2008; 295 (03) G621-G628
- 28 Verweij N, Haas ME, Nielsen JB. et al. Germline Mutations in CIDEB and Protection against Liver Disease. N Engl J Med 2022; 387 (04) 332-344
- 29 Li JZ, Ye J, Xue B. et al. Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes 2007; 56 (10) 2523-2532
- 30 Mashek DG, Khan SA, Sathyanarayan A, Ploeger JM, Franklin MP. Hepatic lipid droplet biology: getting to the root of fatty liver. Hepatology 2015; 62 (03) 964-967
- 31 Farese Jr RV, Walther TC. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 2009; 139 (05) 855-860
- 32 Tandra S, Yeh MM, Brunt EM. et al. Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. J Hepatol 2011; 55 (03) 654-659
- 33 Goh GB, McCullough AJ. Natural history of nonalcoholic fatty liver disease. Dig Dis Sci 2016; 61 (05) 1226-1233
- 34 Scorletti E, Carr RM. A new perspective on NAFLD: Focusing on lipid droplets. J Hepatol 2022; 76 (04) 934-945
- 35 Zhang XQ, Xu CF, Yu CH, Chen WX, Li YM. Role of endoplasmic reticulum stress in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20 (07) 1768-1776
- 36 Ben M'barek K, Ajjaji D, Chorlay A, Vanni S, Forêt L, Thiam AR. ER Membrane phospholipids and surface tension control cellular lipid droplet formation. Dev Cell 2017; 41 (06) 591.e7-604.e7
- 37 Song MJ, Malhi H. The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease. Pharmacol Ther 2019; 203: 107401
- 38 Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018; 69 (04) 927-947
- 39 Straub BK, Stoeffel P, Heid H, Zimbelmann R, Schirmacher P. Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 2008; 47 (06) 1936-1946
- 40 Ju L, Han J, Zhang X. et al. Obesity-associated inflammation triggers an autophagy-lysosomal response in adipocytes and causes degradation of perilipin 1. Cell Death Dis 2019; 10 (02) 121
- 41 Carr RM, Dhir R, Mahadev K, Comerford M, Chalasani NP, Ahima RS. Perilipin staining distinguishes between steatosis and nonalcoholic steatohepatitis in adults and children. Clin Gastroenterol Hepatol 2017; 15 (01) 145-147
- 42 Carr RM, Ahima RS. Pathophysiology of lipid droplet proteins in liver diseases. Exp Cell Res 2016; 340 (02) 187-192
- 43 Carr RM, Dhir R, Yin X, Agarwal B, Ahima RS. Temporal effects of ethanol consumption on energy homeostasis, hepatic steatosis, and insulin sensitivity in mice. Alcohol Clin Exp Res 2013; 37 (07) 1091-1099
- 44 McManaman JL, Bales ES, Orlicky DJ. et al. Perilipin-2-null mice are protected against diet-induced obesity, adipose inflammation, and fatty liver disease. J Lipid Res 2013; 54 (05) 1346-1359
- 45 Libby AE, Bales E, Orlicky DJ, McManaman JL. Perilipin-2 deletion impairs hepatic lipid accumulation by interfering with sterol regulatory element-binding protein (SREBP) activation and altering the hepatic lipidome. J Biol Chem 2016; 291 (46) 24231-24246
- 46 Faulkner CS, White CM, Shah VH, Jophlin LL. A single nucleotide polymorphism of PLIN2 is associated with nonalcoholic steatohepatitis and causes phenotypic changes in hepatocyte lipid droplets: a pilot study. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865 (05) 158637
- 47 Sentinelli F, Capoccia D, Incani M. et al. The perilipin 2 (PLIN2) gene Ser251Pro missense mutation is associated with reduced insulin secretion and increased insulin sensitivity in Italian obese subjects. Diabetes Metab Res Rev 2016; 32 (06) 550-556
- 48 Magné J, Aminoff A, Perman Sundelin J. et al. The minor allele of the missense polymorphism Ser251Pro in perilipin 2 (PLIN2) disrupts an α-helix, affects lipolysis, and is associated with reduced plasma triglyceride concentration in humans. FASEB J 2013; 27 (08) 3090-3099
- 49 Scorletti E, Vujkovic M, Himes B. et al. PLIN2 rs35568725 POLYMORPHISM AND NON-ALCOHOLIC FATTY LIVER DISEASE: A PHEWAS ANALYSIS. Hepatology 2022; 76: S872
- 50 Nimura S, Yamaguchi T, Ueda K. et al. Olanzapine promotes the accumulation of lipid droplets and the expression of multiple perilipins in human adipocytes. Biochem Biophys Res Commun 2015; 467 (04) 906-912
- 51 Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862 (10, Pt B): 1221-1232
- 52 Wang C, Zhao Y, Gao X. et al. Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis. Hepatology 2015; 61 (03) 870-882
- 53 Asimakopoulou A, Engel KM, Gassler N. et al. Deletion of perilipin 5 protects against hepatic injury in nonalcoholic fatty liver disease via missing inflammasome activation. Cells 2020; 9 (06) 9
- 54 Ma SY, Sun KS, Zhang M. et al. Disruption of Plin5 degradation by CMA causes lipid homeostasis imbalance in NAFLD. Liver Int 2020; 40 (10) 2427-2438
- 55 Keenan SN, Meex RC, Lo JCY. et al. Perilipin 5 deletion in hepatocytes remodels lipid metabolism and causes hepatic insulin resistance in mice. Diabetes 2019; 68 (03) 543-555
- 56 Vujkovic M, Ramdas S, Lorenz KM. et al; Regeneron Genetics Center, Geisinger-Regeneron DiscovEHR Collaboration, EPoS Consortium, VA Million Veteran Program. A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation. Nat Genet 2022; 54 (06) 761-771
- 57 Bruschi FV, Claudel T, Tardelli M. et al. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 2017; 65 (06) 1875-1890
- 58 Romeo S, Kozlitina J, Xing C. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40 (12) 1461-1465
- 59 Luukkonen PK, Nick A, Hölttä-Vuori M. et al. Human PNPLA3-I148M variant increases hepatic retention of polyunsaturated fatty acids. JCI Insight 2019; 4 (16) 4
- 60 Verkade HJ, Fast DG, Rusiñol AE, Scraba DG, Vance DE. Impaired biosynthesis of phosphatidylcholine causes a decrease in the number of very low density lipoprotein particles in the Golgi but not in the endoplasmic reticulum of rat liver. J Biol Chem 1993; 268 (33) 24990-24996
- 61 Li Z, Agellon LB, Allen TM. et al. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab 2006; 3 (05) 321-331
- 62 Abul-Husn NS, Cheng X, Li AH. et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N Engl J Med 2018; 378 (12) 1096-1106
- 63 Luukkonen PK, Tukiainen T, Juuti A. et al. Hydroxysteroid 17-β dehydrogenase 13 variant increases phospholipids and protects against fibrosis in nonalcoholic fatty liver disease. JCI Insight 2020; 5 (05) 5
- 64 Li X, Ye J, Zhou L, Gu W, Fisher EA, Li P. Opposing roles of cell death-inducing DFF45-like effector B and perilipin 2 in controlling hepatic VLDL lipidation. J Lipid Res 2012; 53 (09) 1877-1889
- 65 Xu W, Wu L, Yu M. et al. Differential roles of cell death-inducing DNA fragmentation factor-α-like effector (CIDE) proteins in promoting lipid droplet fusion and growth in subpopulations of hepatocytes. J Biol Chem 2016; 291 (09) 4282-4293
- 66 Ye J, Li JZ, Liu Y. et al. Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab 2009; 9 (02) 177-190
- 67 Brunt EM, Kleiner DE, Wilson LA, Belt P, Neuschwander-Tetri BA. NASH Clinical Research Network (CRN). Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 2011; 53 (03) 810-820
- 68 Argo CK, Ikura Y, Lackner C, Caldwell SH. The fat droplet in hepatocellular ballooning and implications for scoring nonalcoholic steatohepatitis therapeutic response. Hepatology 2016; 63 (03) 1056-1057
- 69 Fujii H, Ikura Y, Arimoto J. et al. Expression of perilipin and adipophilin in nonalcoholic fatty liver disease; relevance to oxidative injury and hepatocyte ballooning. J Atheroscler Thromb 2009; 16 (06) 893-901
- 70 Caldwell S, Ikura Y, Dias D. et al. Hepatocellular ballooning in NASH. J Hepatol 2010; 53 (04) 719-723
- 71 Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol 2018; 68 (02) 280-295
- 72 Malhi H, Bronk SF, Werneburg NW, Gores GJ. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem 2006; 281 (17) 12093-12101
- 73 Gan LT, Van Rooyen DM, Koina ME, McCuskey RS, Teoh NC, Farrell GC. Hepatocyte free cholesterol lipotoxicity results from JNK1-mediated mitochondrial injury and is HMGB1 and TLR4-dependent. J Hepatol 2014; 61 (06) 1376-1384
- 74 Hager L, Li L, Pun H. et al. Lecithin:cholesterol acyltransferase deficiency protects against cholesterol-induced hepatic endoplasmic reticulum stress in mice. J Biol Chem 2012; 287 (24) 20755-20768
- 75 Francque S, Verrijken A, Mertens I. et al. Noncirrhotic human nonalcoholic fatty liver disease induces portal hypertension in relation to the histological degree of steatosis. Eur J Gastroenterol Hepatol 2010; 22 (12) 1449-1457
- 76 Loneker AE, Alisafaei F, Kant A. et al. Lipid droplets are intracellular mechanical stressors that impair hepatocyte function. Proc Natl Acad Sci U S A 2023; 120 (16) e2216811120
- 77 DeLeve LD. Vascular liver disease and the liver sinusoidal endothelial cell. In: DeLeve LD, Garcia-Tsao G. eds. Vascular Liver Disease: Mechanisms and Management. New York, NY: Springer New York; 2011: 25-40
- 78 Corpechot C, Barbu V, Wendum D. et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 2002; 35 (05) 1010-1021
- 79 Seifalian AM, Piasecki C, Agarwal A, Davidson BR. The effect of graded steatosis on flow in the hepatic parenchymal microcirculation. Transplantation 1999; 68 (06) 780-784
- 80 Francque S, Wamutu S, Chatterjee S. et al. Non-alcoholic steatohepatitis induces non-fibrosis-related portal hypertension associated with splanchnic vasodilation and signs of a hyperdynamic circulation in vitro and in vivo in a rat model. Liver Int 2010; 30 (03) 365-375
- 81 Farrell GC, Teoh NC, McCuskey RS. Hepatic microcirculation in fatty liver disease. Anat Rec (Hoboken) 2008; 291 (06) 684-692
- 82 Rockey DC, Bell PD, Hill JA. Fibrosis–a common pathway to organ injury and failure. N Engl J Med 2015; 373 (01) 96
- 83 Sung KC, Wild SH, Byrne CD. Resolution of fatty liver and risk of incident diabetes. J Clin Endocrinol Metab 2013; 98 (09) 3637-3643
- 84 Meyersohn NM, Mayrhofer T, Corey KE. et al. Association of hepatic steatosis with major adverse cardiovascular events, independent of coronary artery disease. Clin Gastroenterol Hepatol 2021; 19 (07) 1480-1488.e14
- 85 Chambergo-Michilot D, Rodrigo-Gallardo PK, Huaman MR, Vasquez-Chavesta AZ, Salinas-Sedo G, Toro-Huamanchumo CJ. Hypertension and histopathology severity of non-alcoholic fatty liver disease among adults with obesity: a cross-sectional study. Clin Exp Gastroenterol 2023; 16: 129-136
- 86 Chin Y, Lim J, Kong G. et al. Hepatic steatosis and advanced hepatic fibrosis are independent predictors of long-term mortality in acute myocardial infarction. Diabetes Obes Metab 2023; 25 (04) 1032-1044
- 87 Spitzer AL, Lao OB, Dick AA. et al. The biopsied donor liver: incorporating macrosteatosis into high-risk donor assessment. Liver Transpl 2010; 16 (07) 874-884
- 88 Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019; 70 (01) 151-171
- 89 Cheemerla S, Balakrishnan M. Global epidemiology of chronic liver disease. Clin Liver Dis (Hoboken) 2021; 17 (05) 365-370
- 90 Jeon S, Carr R. Alcohol effects on hepatic lipid metabolism. J Lipid Res 2020; 61 (04) 470-479
- 91 Schulze RJ, Ding WX. Lipid droplet dynamics in alcoholic fatty liver disease. Liver Res 2019; 3 (3–4): 185-190
- 92 Jeong WI, Osei-Hyiaman D, Park O. et al. Paracrine activation of hepatic CB1 receptors by stellate cell-derived endocannabinoids mediates alcoholic fatty liver. Cell Metab 2008; 7 (03) 227-235
- 93 Esfandiari F, Medici V, Wong DH. et al. Epigenetic regulation of hepatic endoplasmic reticulum stress pathways in the ethanol-fed cystathionine beta synthase-deficient mouse. Hepatology 2010; 51 (03) 932-941
- 94 Dara L, Ji C, Kaplowitz N. The contribution of endoplasmic reticulum stress to liver diseases. Hepatology 2011; 53 (05) 1752-1763
- 95 Peng Z, Borea PA, Varani K. et al. Adenosine signaling contributes to ethanol-induced fatty liver in mice. J Clin Invest 2009; 119 (03) 582-594
- 96 You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 2004; 127 (06) 1798-1808
- 97 You M, Liang X, Ajmo JM, Ness GC. Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. Am J Physiol Gastrointest Liver Physiol 2008; 294 (04) G892-G898
- 98 Horiguchi N, Wang L, Mukhopadhyay P. et al. Cell type-dependent pro- and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury. Gastroenterology 2008; 134 (04) 1148-1158
- 99 Liangpunsakul S, Ross RA, Crabb DW. Activation of carbohydrate response element-binding protein by ethanol. J Investig Med 2013; 61 (02) 270-277
- 100 Marmier S, Dentin R, Daujat-Chavanieu M. et al. Novel role for carbohydrate responsive element binding protein in the control of ethanol metabolism and susceptibility to binge drinking. Hepatology 2015; 62 (04) 1086-1100
- 101 Zhang W, Sun Q, Zhong W, Sun X, Zhou Z. Hepatic peroxisome proliferator-activated receptor gamma signaling contributes to alcohol-induced hepatic steatosis and inflammation in mice. Alcohol Clin Exp Res 2016; 40 (05) 988-999
- 102 Addolorato G, Capristo E, Greco AV, Stefanini GF, Gasbarrini G. Energy expenditure, substrate oxidation, and body composition in subjects with chronic alcoholism: new findings from metabolic assessment. Alcohol Clin Exp Res 1997; 21 (06) 962-967
- 103 Carr RM, Correnti J. Insulin resistance in clinical and experimental alcoholic liver disease. Ann N Y Acad Sci 2015; 1353 (01) 1-20
- 104 Hussain MM, Maxfield FR, Más-Oliva J. et al. Clearance of chylomicron remnants by the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. J Biol Chem 1991; 266 (21) 13936-13940
- 105 Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005; 115 (05) 1343-1351
- 106 Mathur M, Yeh YT, Arya RK. et al. Adipose lipolysis is important for ethanol to induce fatty liver in the National Institute on Alcohol Abuse and Alcoholism murine model of chronic and binge ethanol feeding. Hepatology 2023; 77 (05) 1688-1701
- 107 Stahl A, Gimeno RE, Tartaglia LA, Lodish HF. Fatty acid transport proteins: a current view of a growing family. Trends Endocrinol Metab 2001; 12 (06) 266-273
- 108 Zhou J, Febbraio M, Wada T. et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology 2008; 134 (02) 556-567
- 109 Clugston RD, Yuen JJ, Hu Y. et al. CD36-deficient mice are resistant to alcohol- and high-carbohydrate-induced hepatic steatosis. J Lipid Res 2014; 55 (02) 239-246
- 110 Blomstrand R, Kager L, Lantto O. Studies on the ethanol-induced decrease of fatty acid oxidation in rat and human liver slices. Life Sci 1973; 13 (08) 1131-1141
- 111 Cederbaum AI, Lieber CS, Beattie DS, Rubin E. Effect of chronic ethanol ingestion on fatty acid oxidation by hepatic mitochondria. J Biol Chem 1975; 250 (13) 5122-5129
- 112 Hoek JB, Cahill A, Pastorino JG. Alcohol and mitochondria: a dysfunctional relationship. Gastroenterology 2002; 122 (07) 2049-2063
- 113 Correnti JM, Gottshall L, Lin A. et al. Ethanol and C2 ceramide activate fatty acid oxidation in human hepatoma cells. Sci Rep 2018; 8 (01) 12923
- 114 Suter PM, Schutz Y, Jequier E. The effect of ethanol on fat storage in healthy subjects. N Engl J Med 1992; 326 (15) 983-987
- 115 Sonko BJ, Prentice AM, Murgatroyd PR, Goldberg GR, van de Ven ML, Coward WA. Effect of alcohol on postmeal fat storage. Am J Clin Nutr 1994; 59 (03) 619-625
- 116 Sugimoto T, Yamashita S, Ishigami M. et al. Decreased microsomal triglyceride transfer protein activity contributes to initiation of alcoholic liver steatosis in rats. J Hepatol 2002; 36 (02) 157-162
- 117 Nanji AA, Dannenberg AJ, Jokelainen K, Bass NM. Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation. J Pharmacol Exp Ther 2004; 310 (01) 417-424
- 118 Kharbanda KK, Mailliard ME, Baldwin CR, Beckenhauer HC, Sorrell MF, Tuma DJ. Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidylethanolamine methyltransferase pathway. J Hepatol 2007; 46 (02) 314-321
- 119 Schulze RJ, Rasineni K, Weller SG. et al. Ethanol exposure inhibits hepatocyte lipophagy by inactivating the small guanosine triphosphatase Rab7. Hepatol Commun 2017; 1 (02) 140-152
- 120 Chao X, Wang S, Zhao K. et al. Impaired TFEB-mediated lysosome biogenesis and autophagy promote chronic ethanol-induced liver injury and steatosis in mice. Gastroenterology 2018; 155 (03) 865.e12-879.e12
- 121 Thomes PG, Trambly CS, Fox HS, Tuma DJ, Donohue Jr TM. Acute and chronic ethanol administration differentially modulate hepatic autophagy and transcription factor EB. Alcohol Clin Exp Res 2015; 39 (12) 2354-2363
- 122 Rasineni K, Donohue Jr TM, Thomes PG. et al. Ethanol-induced steatosis involves impairment of lipophagy, associated with reduced Dynamin2 activity. Hepatol Commun 2017; 1 (06) 501-512
- 123 Jambunathan S, Yin J, Khan W, Tamori Y, Puri V. FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation. PLoS One 2011; 6 (12) e28614
- 124 Xu MJ, Cai Y, Wang H. et al. Fat-specific protein 27/CIDEC promotes development of alcoholic steatohepatitis in mice and humans. Gastroenterology 2015; 149 (04) 1030.e6-1041.e6
- 125 Gu Y, Yang Y, Cao X. et al. Plin3 protects against alcoholic liver injury by facilitating lipid export from the endoplasmic reticulum. J Cell Biochem 2019; 120 (09) 16075-16087
- 126 Groebner JL, Girón-Bravo MT, Rothberg ML, Adhikari R, Tuma DJ, Tuma PL. Alcohol-induced microtubule acetylation leads to the accumulation of large, immobile lipid droplets. Am J Physiol Gastrointest Liver Physiol 2019; 317 (04) G373-G386
- 127 Buch S, Stickel F, Trépo E. et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet 2015; 47 (12) 1443-1448
- 128 Bianco C, Casirati E, Malvestiti F, Valenti L. Genetic predisposition similarities between NASH and ASH: identification of new therapeutic targets. JHEP Rep Innov Hepatol 2021; 3 (03) 100284
- 129 Li JZ, Huang Y, Karaman R. et al. Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J Clin Invest 2012; 122 (11) 4130-4144
- 130 Teo K, Abeysekera KWM, Adams L. et al; EU-PNAFLD Investigators, GOLD Consortium. rs641738C>T near MBOAT7 is associated with liver fat, ALT and fibrosis in NAFLD: a meta-analysis. J Hepatol 2021; 74 (01) 20-30
- 131 Stickel F, Lutz P, Buch S. et al. Genetic variation in HSD17B13 reduces the risk of developing cirrhosis and hepatocellular carcinoma in alcohol misusers. Hepatology 2020; 72 (01) 88-102
- 132 Mohd Hanafiah K, Groeger J, Flaxman AD, Wiersma ST. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology 2013; 57 (04) 1333-1342
- 133 Ferguson D, Zhang J, Davis MA. et al. The lipid droplet-associated protein perilipin 3 facilitates hepatitis C virus-driven hepatic steatosis. J Lipid Res 2017; 58 (02) 420-432
- 134 [Anonymous]. Global progress report on HIV, viral hepatitis and sexually transmitted infections, 2021. In: Accountability for the global health sector strategies 2016–2021: actions for impact. Geneva: World Health Organization; 2021
- 135 Adinolfi LE, Gambardella M, Andreana A, Tripodi MF, Utili R, Ruggiero G. Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. Hepatology 2001; 33 (06) 1358-1364
- 136 André P, Komurian-Pradel F, Deforges S. et al. Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 2002; 76 (14) 6919-6928
- 137 Niepmann M. Hepatitis C virus RNA translation. Curr Top Microbiol Immunol 2013; 369: 143-166
- 138 McLauchlan J, Lemberg MK, Hope G, Martoglio B. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J 2002; 21 (15) 3980-3988
- 139 Boulant S, Montserret R, Hope RG. et al. Structural determinants that target the hepatitis C virus core protein to lipid droplets. J Biol Chem 2006; 281 (31) 22236-22247
- 140 Pène V, Hernandez C, Vauloup-Fellous C, Garaud-Aunis J, Rosenberg AR. Sequential processing of hepatitis C virus core protein by host cell signal peptidase and signal peptide peptidase: a reassessment. J Viral Hepat 2009; 16 (10) 705-715
- 141 Boulant S, Targett-Adams P, McLauchlan J. Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. J Gen Virol 2007; 88 (Pt 8): 2204-2213
- 142 Miyanari Y, Atsuzawa K, Usuda N. et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 2007; 9 (09) 1089-1097
- 143 Bartenschlager R, Penin F, Lohmann V, André P. Assembly of infectious hepatitis C virus particles. Trends Microbiol 2011; 19 (02) 95-103
- 144 Sidorkiewicz M. Hepatitis C virus uses host lipids to its own advantage. Metabolites 2021; 11 (05) 11
- 145 Gastaminza P, Cheng G, Wieland S, Zhong J, Liao W, Chisari FV. Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion. J Virol 2008; 82 (05) 2120-2129
- 146 Hueging K, Doepke M, Vieyres G. et al. Apolipoprotein E codetermines tissue tropism of hepatitis C virus and is crucial for viral cell-to-cell transmission by contributing to a postenvelopment step of assembly. J Virol 2014; 88 (03) 1433-1446
- 147 Lonardo A, Adinolfi LE, Restivo L. et al. Pathogenesis and significance of hepatitis C virus steatosis: an update on survival strategy of a successful pathogen. World J Gastroenterol 2014; 20 (23) 7089-7103
- 148 Hope RG, McLauchlan J. Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. J Gen Virol 2000; 81 (Pt 8): 1913-1925
- 149 Loizides-Mangold U, Clément S, Alfonso-Garcia A. et al. HCV 3a core protein increases lipid droplet cholesteryl ester content via a mechanism dependent on sphingolipid biosynthesis. PLoS One 2014; 9 (12) e115309
- 150 Herker E, Harris C, Hernandez C. et al. Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Med 2010; 16 (11) 1295-1298
- 151 Camus G, Herker E, Modi AA. et al. Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core. J Biol Chem 2013; 288 (14) 9915-9923
- 152 Xu N, Zhang SO, Cole RA. et al. The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. J Cell Biol 2012; 198 (05) 895-911
- 153 Vieyres G, Pietschmann T. HCV pit stop at the lipid droplet: refuel lipids and put on a lipoprotein coat before exit. Cells 2019; 8 (03) 8
- 154 Lerat H, Kammoun HL, Hainault I. et al. Hepatitis C virus proteins induce lipogenesis and defective triglyceride secretion in transgenic mice. J Biol Chem 2009; 284 (48) 33466-33474
- 155 Lowey B, Hertz L, Chiu S. et al. Hepatitis C virus infection induces hepatic expression of NF-κB-inducing kinase and lipogenesis by downregulating miR-122. mBio 2019; 10 (04) e01617-e01619
- 156 Khatun M, Sur S, Steele R, Ray R, Ray RB. Inhibition of long noncoding RNA Linc-Pint by hepatitis C virus in infected hepatocytes enhances lipogenesis. Hepatology 2021; 74 (01) 41-54
- 157 Vieyres G, Reichert I, Carpentier A, Vondran FWR, Pietschmann T. The ATGL lipase cooperates with ABHD5 to mobilize lipids for hepatitis C virus assembly. PLoS Pathog 2020; 16 (06) e1008554
- 158 Carr RM, Dhir R, Mahadev K. et al. Perilipin staining distinguishes between steatosis and non-alcoholic steatohepatitis in adults and children. Clin Gastroenterol Hepatol 2017; 15 (01) 145-147
- 159 Zhang J, Gao X, Yuan Y. et al. Perilipin 5 alleviates HCV NS5A-induced lipotoxic injuries in liver. Lipids Health Dis 2019; 18 (01) 87
- 160 Salameh H, Masadeh M, Al Hanayneh M. et al. PNPLA3 polymorphism increases risk for and severity of chronic hepatitis C liver disease. World J Hepatol 2016; 8 (35) 1584-1592
- 161 About F, Abel L, Cobat A. HCV-associated liver fibrosis and HSD17B13. N Engl J Med 2018; 379 (19) 1875-1876
- 162 Burlone ME, Bellan M, Barbaglia MN. et al. HSD17B13 and other liver fat-modulating genes predict development of hepatocellular carcinoma among HCV-positive cirrhotics with and without viral clearance after DAA treatment. Clin J Gastroenterol 2022; 15 (02) 301-309
- 163 Listenberger LL, Brown DA. Fluorescent detection of lipid droplets and associated proteins. Curr Protoc Cell Biol 2007 ;Chapter 24:Unit 24.22
- 164 Listenberger LL, Studer AM, Brown DA, Wolins NE. Fluorescent detection of lipid droplets and associated proteins. Curr Protoc Cell Biol 2016; 71: 31.1 , 14
- 165 Qiu B, Simon MC. BODIPY 493/503 staining of neutral lipid droplets for microscopy and quantification by flow cytometry. Bio Protoc 2016; 6 (17) 6
- 166 Chen J, Yue F, Kuang S. Labeling and analyzing lipid droplets in mouse muscle stem cells. STAR Protoc 2022; 3 (04) 101849
- 167 Garcia K, Alves A, Ribeiro-Rodrigues TM, Reis F, Viana S. Analysis of fluorescent-stained lipid droplets with 3d reconstruction for hepatic steatosis assessment. J Vis Exp 2023; (196) e65206 DOI: 10.3791/65206.
- 168 Gojanovich AD, Gimenez MC, Masone D. et al. Human adipose-derived mesenchymal stem/stromal cells handling protocols. lipid droplets and proteins double-staining. Front Cell Dev Biol 2018; 6: 33
- 169 Nishad A, Naseem A, Rani S, Malik S. Automated qualitative batch measurement of lipid droplets in the liver of bird using ImageJ. STAR Protoc 2023; 4 (03) 102466
- 170 Liu CY, Zhu J, Xie Z. Visualizing yeast organelles with fluorescent protein markers. J Vis Exp 2022; (182) e63846 DOI: 10.3791/63846.
- 171 Galli A, Scheel TKH, Prentoe JC, Mikkelsen LS, Gottwein JM, Bukh J. Analysis of hepatitis C virus core/NS5A protein co-localization using novel cell culture systems expressing core-NS2 and NS5A of genotypes 1-7. J Gen Virol 2013; 94 (Pt 10): 2221-2235
- 172 Schüssele DS, Haller PK, Haas ML, Hunter C, Sporbeck K, Proikas-Cezanne T. Autophagy profiling in single cells with open source CellProfiler-based image analysis. Autophagy 2023; 19 (01) 338-351
- 173 Adomshick V, Pu Y, Veiga-Lopez A. Automated lipid droplet quantification system for phenotypic analysis of adipocytes using CellProfiler. Toxicol Mech Methods 2020; 30 (05) 378-387
- 174 Stiebing C, Schmölz L, Wallert M, Matthäus C, Lorkowski S, Popp J. Raman imaging of macrophages incubated with triglyceride-enriched oxLDL visualizes translocation of lipids between endocytic vesicles and lipid droplets. J Lipid Res 2017; 58 (05) 876-883
- 175 Fujimoto T, Ohsaki Y, Suzuki M, Cheng J. Imaging lipid droplets by electron microscopy. Methods Cell Biol 2013; 116: 227-251
- 176 Brasaemle DL, Wolins NE. Isolation of lipid droplets from cells by density gradient centrifugation. Curr Protoc Cell Biol 2016; 72: 3.15.1-3.15.13
- 177 Ding Y, Zhang S, Yang L. et al. Isolating lipid droplets from multiple species. Nat Protoc 2013; 8 (01) 43-51
- 178 Mannik J, Meyers A, Dalhaimer P. Isolation of cellular lipid droplets: two purification techniques starting from yeast cells and human placentas. J Vis Exp 2014; (86) 50981 DOI: 10.3791/50981.
- 179 Brasaemle DL, Wolins NE. Isolation of lipid droplets from cells by density gradient centrifugation. Curr Protoc Cell Biol 2016; 72: 15.1 , 13
- 180 Rösch K, Kwiatkowski M, Schlüter H, Herker E. Lipid droplet isolation for quantitative mass spectrometry analysis. J Vis Exp 2017; (122) 55585
- 181 Brettschneider J, Correnti JM, Lin C, Williams B, Oranu A, Kuriakose A, McIver-Jenkins D, Haba A, Kaneza I, Jeon S, Scorletti E, Carr RM. Rapid lipid droplet isolation protocol using a well-established organelle isolation kit. J Vis Exp 2019; (146) e59290 DOI: 10.3791/59290.
- 182 Kamerkar S, Singh J, Tripathy S, Bhonsle H, Kumar M, Mallik R. Metabolic and immune-sensitive contacts between lipid droplets and endoplasmic reticulum reconstituted in vitro. Proc Natl Acad Sci U S A 2022; 119 (24) e2200513119
- 183 Preuss C, Jelenik T, Bódis K. et al. A new targeted lipidomics approach reveals lipid droplets in liver, muscle and heart as a repository for diacylglycerol and ceramide species in non-alcoholic fatty liver. Cells 2019; 8 (03) 8
- 184 Rémy C, Fouilhé N, Barba I. et al. Evidence that mobile lipids detected in rat brain glioma by 1H nuclear magnetic resonance correspond to lipid droplets. Cancer Res 1997; 57 (03) 407-414
- 185 Bartz R, Li WH, Venables B. et al. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res 2007; 48 (04) 837-847
- 186 Nigam S, Ranjan R, Sinha N, Ateeq B. Nuclear magnetic resonance spectroscopy reveals dysregulation of monounsaturated fatty acid metabolism upon SPINK1 attenuation in colorectal cancer. NMR Biomed 2022; 35 (07) e4705
- 187 Schmidt C, Ploier B, Koch B, Daum G. Analysis of yeast lipid droplet proteome and lipidome. Methods Cell Biol 2013; 116: 15-37
- 188 Lagrutta LC, Layerenza JP, Bronsoms S, Trejo SA, Ves-Losada A. Nuclear-lipid-droplet proteome: carboxylesterase as a nuclear lipase involved in lipid-droplet homeostasis. Heliyon 2021; 7 (03) e06539
- 189 Peterson CWH, Deol KK, To M, Olzmann JA. Optimized protocol for the identification of lipid droplet proteomes using proximity labeling proteomics in cultured human cells. STAR Protoc 2021; 2 (02) 100579
- 190 Tatenaka Y, Kato H, Ishiyama M. et al. Monitoring lipid droplet dynamics in living cells by using fluorescent probes. Biochemistry 2019; 58 (06) 499-503
- 191 Ma X, Zhi Z, Zhang S, Liu P. Measurement of ATGL activity using adiposomes. Biophys Rep 2023; 9 (01) 3-14
- 192 Bridge-Comer PE, Reilly SM. Measuring the rate of lipolysis in ex vivo murine adipose tissue and primary preadipocytes differentiated in vitro. J Vis Exp 2023; (193) e65106 DOI: 10.3791/65106.
- 193 Chorlay A, Santinho A, Thiam AR. Making droplet-embedded vesicles to model cellular lipid droplets. STAR Protoc 2020; 1 (03) 100116
- 194 Zhi Z, Ma X, Zhou C, Mechler A, Zhang S, Liu P. Protocol for using artificial lipid droplets to study the binding affinity of lipid droplet-associated proteins. STAR Protoc 2022; 3 (01) 101214
- 195 Drew L. Drug development: sprint finish. Nature 2017; 551 (7681) 551
- 196 A study to assess safety, tolerability, PK and PD of AZD2693 in non-alcoholic steatohepatitis patients. Accessed September 25, 2023, at: https://clinicaltrials.gov/ct2/show/NCT04483947
- 197 Lindén D, Ahnmark A, Pingitore P. et al. Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice. Mol Metab 2019; 22: 49-61
- 198 Knockdown of HSD17B13 mRNA, pharmacokinetics, safety, and tolerability, of AZD7503 in non-alcoholic fatty liver disease. Accessed September 25, 2023, at: https://clinicaltrials.gov/ct2/show/NCT05560607