Klin Monbl Augenheilkd 2024; 241(01): 48-68
DOI: 10.1055/a-2186-5548
Übersicht

Current Therapeutic Approaches for Gravesʼ Orbitopathy – are Targeted Therapies the Future?

Article in several languages: deutsch | English
Anja Eckstein
1   Klinik für Augenheilkunde, Universitätsklinikum Essen, Deutschland
,
Mareile Stöhr
1   Klinik für Augenheilkunde, Universitätsklinikum Essen, Deutschland
,
Gina-Eva Görtz
2   Labor für Molekulare Augenheilkunde, Universität Duisburg-Essen, Duisburg, Deutschland
,
Anne Gulbins
2   Labor für Molekulare Augenheilkunde, Universität Duisburg-Essen, Duisburg, Deutschland
,
Lars Möller
3   Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen, Deutschland
,
Dagmar Fuehrer-Sakel
3   Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen, Deutschland
,
Michael Oeverhaus
1   Klinik für Augenheilkunde, Universitätsklinikum Essen, Deutschland
4   Gemeinschaftspraxis Dres. Oeverhaus & Weiß, Rietberg, Deutschland
› Author Affiliations

Abstract

Gravesʼ orbitopathy is an autoimmune disease of the orbit that most frequently occurs with Gravesʼ hyperthyroidism. The occurrence of autoantibodies directed against the TSH receptor (TRAb) is of central importance for the diagnosis and pathogenesis. These autoantibodies are mostly stimulating, and induce uncontrolled hyperthyroidism and tissue remodelling in the orbit and more or less pronounced inflammation. Consequently, patients suffer to a variable extent from periocular swelling, exophthalmos, and fibrosis of the eye muscles and thus restrictive motility impairment with double vision. In recent decades, therapeutic approaches have mainly comprised immunosuppressive treatments and antithyroid drug therapy for hyperthyroidism to inhibit thyroid hormone production. With the recognition that TRAb also activates an important growth factor receptor, IGF1R (insulin-like growth factor 1 receptor), biological agents have been developed. Teprotumumab (an inhibitory IGF1R antibody) has already been approved in the USA and the therapeutic effects are enormous, especially with regard to the reduction of exophthalmos. Side effects are to be considered, especially hyperglycaemia and hearing loss. It is not yet clear whether the autoimmune reaction (development of the TRAb/attraction of immunocompetent cells) is also influenced by anti-IGF1R inhibiting agents. Recurrences after therapy show that the inhibition of antibody development must be included in the therapeutic concept, especially in severe cases.



Publication History

Received: 08 July 2023

Accepted: 05 October 2023

Accepted Manuscript online:
05 October 2023

Article published online:
19 January 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 Davies TF, Andersen S, Latif R. et al. Gravesʼ disease. Nat Rev Dis Primers 2020; 6: 52
  • 2 Krieger CC, Neumann S, Gershengorn MC. TSH/IGF1 receptor crosstalk: Mechanism and clinical implications. Pharmacol Ther 2020; 209: 107502
  • 3 Smith TJ, Janssen J. Insulin-like Growth Factor-I Receptor and Thyroid-Associated Ophthalmopathy. Endocr Rev 2019; 40: 236-267
  • 4 Smith TJ, Hegedus L, Douglas RS. Role of insulin-like growth factor-1 (IGF-1) pathway in the pathogenesis of Gravesʼ orbitopathy. Best Pract Res Clin Endocrinol Metab 2012; 26: 291-302
  • 5 Smith TJ. Understanding Pathogenesis Intersects With Effective Treatment for Thyroid Eye Disease. J Clin Endocrinol Metab 2022; 107 (Suppl. 01) S13-S26
  • 6 Krause G, Eckstein A, Schulein R. Modulating TSH Receptor Signaling for Therapeutic Benefit. Eur Thyroid J 2020; 9: 66-77
  • 7 Kumar S, Coenen MJ, Scherer PE. et al. Evidence for enhanced adipogenesis in the orbits of patients with Gravesʼ ophthalmopathy. J Clin Endocrinol Metab 2004; 89: 930-935
  • 8 Kumar S, Nadeem S, Stan MN. et al. A stimulatory TSH receptor antibody enhances adipogenesis via phosphoinositide 3-kinase activation in orbital preadipocytes from patients with Gravesʼ ophthalmopathy. J Mol Endocrinol 2011; 46: 155-163
  • 9 Fang S, Huang Y, Liu X. et al. Interaction Between CCR6+ Th17 Cells and CD34+ Fibrocytes Promotes Inflammation: Implications in Gravesʼ Orbitopathy in Chinese Population. Invest Ophthalmol Vis Sci 2018; 59: 2604-2614
  • 10 Fang S, Lu Y, Huang Y. et al. Mechanisms That Underly T Cell Immunity in Gravesʼ Orbitopathy. Front Endocrinol (Lausanne) 2021; 12: 648732
  • 11 Fang S, Zhang S, Huang Y. et al. Evidence for Associations Between Th1/Th17 “Hybrid” Phenotype and Altered Lipometabolism in Very Severe Graves Orbitopathy. J Clin Endocrinol Metab 2020; 105: dgaa124
  • 12 Sonderegger I, Iezzi G, Maier R. et al. GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J Exp Med 2008; 205: 2281-2294
  • 13 Görtz GE, Philipp S, Bruderek K. et al. Macrophage-Orbital Fibroblast Interaction and Hypoxia Promote Inflammation and Adipogenesis in Gravesʼ Orbitopathy. Endocrinology 2022; 164: bqac203
  • 14 Eckstein AK, Plicht M, Lax H. et al. Thyrotropin receptor autoantibodies are independent risk factors for Gravesʼ ophthalmopathy and help to predict severity and outcome of the disease. J Clin Endocrinol Metab 2006; 91: 3464-3470
  • 15 Stöhr M, Oeverhaus M, Lytton SD. et al. Predicting the Course of Gravesʼ Orbitopathy Using Serially Measured TSH-Receptor Autoantibodies by Automated Binding Immunoassays and the Functional Bioassay. Horm Metab Res 2021; 53: 435-443
  • 16 Stöhr M, Oeverhaus M, Lytton SD. et al. Predicting the Relapse of Hyperthyroidism in Treated Gravesʼ Disease with Orbitopathy by Serial Measurements of TSH-Receptor Autoantibodies. Horm Metab Res 2021; 53: 235-244
  • 17 Wiersinga W, Zarkovic M, Bartalena L. et al. Predictive score for the development or progression of Gravesʼ orbitopathy in patients with newly diagnosed Gravesʼ hyperthyroidism. Eur J Endocrinol 2018; 178: 635-643
  • 18 Pfeilschifter J, Ziegler R. Smoking and endocrine ophthalmopathy: impact of smoking severity and current vs. lifetime cigarette consumption. Clin Endocrinol (Oxf) 1996; 45: 477-481
  • 19 Eckstein A, Quadbeck B, Mueller G. et al. Impact of smoking on the response to treatment of thyroid associated ophthalmopathy. Br J Ophthalmol 2003; 87: 773-776
  • 20 Oeverhaus M, Winkler L, Stahr K. et al. Influence of biological sex, age and smoking on Gravesʼ orbitopathy – a ten-year tertiary referral center analysis. Front Endocrinol (Lausanne) 2023; 14: 1160172
  • 21 Lanzolla G, Sabini E, Profilo MA. et al. Relationship between serum cholesterol and Gravesʼ orbitopathy (GO): a confirmatory study. J Endocrinol Invest 2018; 41: 1417-1423
  • 22 Stein JD, Childers D, Gupta S. et al. Risk factors for developing thyroid-associated ophthalmopathy among individuals with Graves disease. JAMA Ophthalmol 2015; 133: 290-296
  • 23 Nilsson A, Tsoumani K, Planck T. Statins Decrease the Risk of Orbitopathy in Newly Diagnosed Patients with Graves Disease. J Clin Endocrinol Metab 2021; 106: 1325-1332
  • 24 Laurberg P, Wallin G, Tallstedt L. et al. TSH-receptor autoimmunity in Gravesʼ disease after therapy with anti-thyroid drugs, surgery, or radioiodine: a 5-year prospective randomized study. Eur J Endocrinol 2008; 158: 69-75
  • 25 Bartalena L, Marcocci C, Bogazzi F. et al. Relation between therapy for hyperthyroidism and the course of Gravesʼ ophthalmopathy. N Engl J Med 1998; 338: 73-78
  • 26 Tallstedt L, Lundell G, Torring O. et al. Occurrence of ophthalmopathy after treatment for Gravesʼ hyperthyroidism. The Thyroid Study Group. N Engl J Med 1992; 326: 1733-1738
  • 27 Iwama S, Kobayashi T, Yasuda Y. et al. Immune checkpoint inhibitor-related thyroid dysfunction. Best Pract Res Clin Endocrinol Metab 2022; 36: 101660
  • 28 Wong V, Fu AX, George J. et al. Thyrotoxicosis induced by alpha-interferon therapy in chronic viral hepatitis. Clin Endocrinol (Oxf) 2002; 56: 793-798
  • 29 Medic F, Bakula M, Alfirevic M. et al. Amiodarone and Thyroid Dysfunction. Acta Clin Croat 2022; 61: 327-341
  • 30 Lee HJ, Li CW, Hammerstad SS. et al. Immunogenetics of autoimmune thyroid diseases: A comprehensive review. J Autoimmun 2015; 64: 82-90
  • 31 Lee HJ, Stefan-Lifshitz M, Li CW. et al. Genetics and epigenetics of autoimmune thyroid diseases: Translational implications. Best Pract Res Clin Endocrinol Metab 2023; 37: 101661
  • 32 Topcu CB, Celik O, Tasan E. Effect of stressful life events on the initiation of Gravesʼ disease. Int J Psychiatry Clin Pract 2012; 16: 307-311
  • 33 Matos-Santos A, Nobre EL, Costa JG. et al. Relationship between the number and impact of stressful life events and the onset of Gravesʼ disease and toxic nodular goitre. Clin Endocrinol (Oxf) 2001; 55: 15-19
  • 34 Winsa B, Adami HO, Bergstrom R. et al. Stressful life events and Gravesʼ disease. Lancet 1991; 338: 1475-1479
  • 35 Uddin JM, Rubinstein T, Hamed-Azzam S. Phenotypes of Thyroid Eye Disease. Ophthalmic Plast Reconstr Surg 2018; 34: S28-S33
  • 36 Eckstein AK, Lösch C, Glowacka D. et al. Euthyroid and primarily hypothyroid patients develop milder and significantly more asymmetrical Graves ophthalmopathy. Br J Ophthalmol 2009; 93: 1052-1056
  • 37 Garip Kuebler A, Halfter K, Reznicek L. et al. Evaluating the interreader agreement and intrareader reproducibility of Visual Field Defects in Thyroid Eye Disease-Compressive Optic Neuropathy. Eye (Lond) 2022; 36: 724-732
  • 38 Garip Kuebler A, Halfter K, Reznicek L. et al. A pathological indicator for dysthyroid optic neuropathy: tritan color vision deficiency. Graefes Arch Clin Exp Ophthalmol 2021; 259: 3421-3426
  • 39 North VS, Freitag SK. A Review of Imaging Modalities in Thyroid-associated Orbitopathy. Int Ophthalmol Clin 2019; 59: 81-93
  • 40 Starks VS, Reinshagen KL, Lee NG. et al. Visual field and orbital computed tomography correlation in dysthyroid optic neuropathy due to thyroid eye disease. Orbit 2020; 39: 77-83
  • 41 Mourits MP, Koornneef L, Wiersinga WM. et al. Clinical criteria for the assessment of disease activity in Gravesʼ ophthalmopathy: a novel approach. Br J Ophthalmol 1989; 73: 639-644
  • 42 Dolman PJ, Rootman J. VISA Classification for Graves orbitopathy. Ophthalmic Plast Reconstr Surg 2006; 22: 319-324
  • 43 European Group on Gravesʼ Orbitopathy (EUGOGO). Wiersinga WM, Perros P, Kahaly GJ. et al. Clinical assessment of patients with Gravesʼ orbitopathy: the European Group on Gravesʼ Orbitopathy recommendations to generalists, specialists and clinical researchers. Eur J Endocrinol 2006; 155: 387-389
  • 44 Burch HB, Perros P, Bednarczuk T. et al. Management of Thyroid Eye Disease: A Consensus Statement by the American Thyroid Association and the European Thyroid Association. Thyroid 2022; 32: 1439-1470
  • 45 Terwee CB, Prummel MF, Gerding MN. et al. Measuring disease activity to predict therapeutic outcome in Gravesʼ ophthalmopathy. Clin Endocrinol (Oxf) 2005; 62: 145-155
  • 46 Salvi M, Vannucchi G, Curro N. et al. Efficacy of B-cell targeted therapy with rituximab in patients with active moderate to severe Gravesʼ orbitopathy: a randomized controlled study. J Clin Endocrinol Metab 2015; 100: 422-431
  • 47 Ponto KA, Merkesdal S, Hommel G. et al. Public health relevance of Gravesʼ orbitopathy. J Clin Endocrinol Metab 2013; 98: 145-152
  • 48 Bartalena L, Wiersinga WM. Proposal for Standardization of Primary and Secondary Outcomes in Patients with Active, Moderate-to-Severe Gravesʼ Orbitopathy. Eur Thyroid J 2020; 9: 3-16
  • 49 Ponto KA, Hommel G, Pitz S. et al. Quality of life in a German graves orbitopathy population. Am J Ophthalmol 2011; 152: 483-490 e481
  • 50 Bahn RS, Gorman CA. Choice of therapy and criteria for assessing treatment outcome in thyroid-associated ophthalmopathy. Endocrinol Metab Clin North Am 1987; 16: 391-407
  • 51 Campi I, Curro N, Vannucchi G. et al. Quantification of Global Ocular Motility Impairment in Gravesʼ Orbitopathy by Measuring Eye Muscle Ductions. Thyroid 2021; 31: 280-287
  • 52 Jellema HM, Saeed P, Mombaerts I. et al. Objective and subjective outcomes of strabismus surgery in Gravesʼ orbitopathy: a prospective multicentre study. Acta Ophthalmol 2017; 95: 386-391
  • 53 Kahaly GJ, Pitz S, Hommel G. et al. Randomized, single blind trial of intravenous versus oral steroid monotherapy in Gravesʼ orbitopathy. J Clin Endocrinol Metab 2005; 90: 5234-5240
  • 54 Kahaly GJ, Riedl M, König J. et al. Mycophenolate plus methylprednisolone versus methylprednisolone alone in active, moderate-to-severe Gravesʼ orbitopathy (MINGO): a randomised, observer-masked, multicentre trial. Lancet Diabetes Endocrinol 2018; 6: 287-298
  • 55 Zang S, Ponto KA, Kahaly GJ. Clinical review: Intravenous glucocorticoids for Gravesʼ orbitopathy: efficacy and morbidity. J Clin Endocrinol Metab 2011; 96: 320-332
  • 56 Bartalena L, Krassas GE, Wiersinga W. et al. Efficacy and safety of three different cumulative doses of intravenous methylprednisolone for moderate to severe and active Gravesʼ orbitopathy. J Clin Endocrinol Metab 2012; 97: 4454-4463
  • 57 Rajendram R, Taylor PN, Wilson VJ. et al. Combined immunosuppression and radiotherapy in thyroid eye disease (CIRTED): a multicentre, 2 × 2 factorial, double-blind, randomised controlled trial. Lancet Diabetes Endocrinol 2018; 6: 299-309
  • 58 Kahaly G, Schrezenmeir J, Krause U. et al. Ciclosporin and prednisone v. prednisone in treatment of Gravesʼ ophthalmopathy: a controlled, randomized and prospective study. Eur J Clin Invest 1986; 16: 415-422
  • 59 Prummel MF, Mourits MP, Berghout A. et al. Prednisone and cyclosporine in the treatment of severe Gravesʼ ophthalmopathy. N Engl J Med 1989; 321: 1353-1359
  • 60 Stan MN, Garrity JA, Carranza Leon BG. et al. Randomized controlled trial of rituximab in patients with Gravesʼ orbitopathy. J Clin Endocrinol Metab 2015; 100: 432-441
  • 61 Ceballos-Macías José J, Rivera-Moscoso R, Flores-Real Jorge A. et al. Tocilizumab in glucocorticoid-resistant graves orbitopathy. A case series report of a Mexican population. Ann Endocrinol (Paris) 2020; 81: 78-82
  • 62 Perez-Moreiras JV, Gomez-Reino JJ, Maneiro JR. et al. Efficacy of Tocilizumab in Patients With Moderate-to-Severe Corticosteroid-Resistant Graves Orbitopathy: A Randomized Clinical Trial. Am J Ophthalmol 2018; 195: 181-190
  • 63 Pérez-Moreiras JV, Varela-Agra M, Prada-Sánchez MC. et al. Steroid-Resistant Gravesʼ Orbitopathy Treated with Tocilizumab in Real-World Clinical Practice: A 9-Year Single-Center Experience. J Clin Med 2021; 10: 706
  • 64 Marcocci C, Kahaly GJ, Krassas GE. et al. Selenium and the course of mild Gravesʼ orbitopathy. N Engl J Med 2011; 364: 1920-1931
  • 65 Mourits MP, van Kempen-Harteveld ML, Garcia MB. et al. Radiotherapy for Gravesʼ orbitopathy: randomised placebo-controlled study. Lancet 2000; 355: 1505-1509
  • 66 Prummel MF, Terwee CB, Gerding MN. et al. A randomized controlled trial of orbital radiotherapy versus sham irradiation in patients with mild Gravesʼ ophthalmopathy. J Clin Endocrinol Metab 2004; 89: 15-20
  • 67 Marcocci C, Bartalena L, Bogazzi F. et al. Orbital radiotherapy combined with high dose systemic glucocorticoids for Gravesʼ ophthalmopathy is more effective than radiotherapy alone: results of a prospective randomized study. J Endocrinol Invest 1991; 14: 853-860
  • 68 Bartalena L, Marcocci C, Chiovato L. et al. Orbital cobalt irradiation combined with systemic corticosteroids for Gravesʼ ophthalmopathy: comparison with systemic corticosteroids alone. J Clin Endocrinol Metab 1983; 56: 1139-1144
  • 69 Kim JW, Han SH, Son BJ. et al. Efficacy of combined orbital radiation and systemic steroids in the management of Gravesʼ orbitopathy. Graefes Arch Clin Exp Ophthalmol 2016; 254: 991-998
  • 70 Oeverhaus M, Witteler T, Lax H. et al. Combination Therapy of Intravenous Steroids and Orbital Irradiation is More Effective Than Intravenous Steroids Alone in Patients with Gravesʼ Orbitopathy. Horm Metab Res 2017; 49: 739-747
  • 71 Marquez SD, Lum BL, McDougall IR. et al. Long-term results of irradiation for patients with progressive Gravesʼ ophthalmopathy. Int J Radiat Oncol Biol Phys 2001; 51: 766-774
  • 72 Wakelkamp IM, Tan H, Saeed P. et al. Orbital irradiation for Gravesʼ ophthalmopathy: Is it safe? A long-term follow-up study. Ophthalmology 2004; 111: 1557-1562
  • 73 Lanzolla G, Maglionico MN, Comi S. et al. Sirolimus as a second-line treatment for Gravesʼ orbitopathy. J Endocrinol Invest 2022; 45: 2171-2180
  • 74 Zhang M, Chong KK, Chen ZY. et al. Rapamycin improves Gravesʼ orbitopathy by suppressing CD4+ cytotoxic T lymphocytes. JCI Insight 2023; 8: e160377
  • 75 Douglas RS, Kahaly GJ, Patel A. et al. Teprotumumab for the Treatment of Active Thyroid Eye Disease. N Engl J Med 2020; 382: 341-352
  • 76 Kahaly GJ, Douglas RS, Holt RJ. et al. Teprotumumab for patients with active thyroid eye disease: a pooled data analysis, subgroup analyses, and off-treatment follow-up results from two randomised, double-masked, placebo-controlled, multicentre trials. Lancet Diabetes Endocrinol 2021; 9: 360-372
  • 77 Smith TJ, Kahaly GJ, Ezra DG. et al. Teprotumumab for Thyroid-Associated Ophthalmopathy. N Engl J Med 2017; 376: 1748-1761
  • 78 Douglas RS, Kahaly GJ, Ugradar S. et al. Teprotumumab Efficacy, Safety, and Durability in Longer-Duration Thyroid Eye Disease and Re-treatment: OPTIC-X Study. Ophthalmology 2022; 129: 438-449
  • 79 Furmaniak J, Sanders J, Sanders P. et al. TSH receptor specific monoclonal autoantibody K1–70 targeting of the TSH receptor in subjects with Gravesʼ disease and Gravesʼ orbitopathy-Results from a phase I clinical trial. Clin Endocrinol (Oxf) 2022; 96: 878-887
  • 80 Le Moli R, Malandrino P, Russo M. et al. Corticosteroid Pulse Therapy for Gravesʼ Ophthalmopathy Reduces the Relapse Rate of Gravesʼ Hyperthyroidism. Front Endocrinol (Lausanne) 2020; 11: 367
  • 81 Bartalena L, Baldeschi L, Dickinson A. et al. Consensus statement of the European Group on Gravesʼ orbitopathy (EUGOGO) on management of GO. Eur J Endocrinol 2008; 158: 273-285
  • 82 Bartalena L, Baldeschi L, Boboridis K. et al. The 2016 European Thyroid Association/European Group on Gravesʼ Orbitopathy Guidelines for the Management of Gravesʼ Orbitopathy. Eur Thyroid J 2016; 5: 9-26
  • 83 Bartalena L, Kahaly GJ, Baldeschi L. et al. The 2021 European Group on Gravesʼ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Gravesʼ orbitopathy. Eur J Endocrinol 2021; 185: G43-G67
  • 84 Kahaly GJ, Bartalena L, Hegedus L. et al. 2018 European Thyroid Association Guideline for the Management of Gravesʼ Hyperthyroidism. Eur Thyroid J 2018; 7: 167-186
  • 85 Schott M, Morgenthaler NG, Fritzen R. et al. Levels of autoantibodies against human TSH receptor predict relapse of hyperthyroidism in Gravesʼ disease. Horm Metab Res 2004; 36: 92-96
  • 86 Meyer Zu Horste M, Pateronis K, Walz MK. et al. The Effect of Early Thyroidectomy on the Course of Active Gravesʼ Orbitopathy (GO): A Retrospective Case Study. Horm Metab Res 2016; 48: 433-439
  • 87 Lanzolla G, Menconi F, Nicoli F. et al. Beneficial effect of low-dose radioiodine ablation for Gravesʼ orbitopathy: results of a retrospective study. J Endocrinol Invest 2021; 44: 2575-2579
  • 88 Menconi F, Leo M, Vitti P. et al. Total thyroid ablation in Gravesʼ orbitopathy. J Endocrinol Invest 2015; 38: 809-815
  • 89 Menconi F, Marino M, Pinchera A. et al. Effects of total thyroid ablation versus near-total thyroidectomy alone on mild to moderate Gravesʼ orbitopathy treated with intravenous glucocorticoids. J Clin Endocrinol Metab 2007; 92: 1653-1658
  • 90 Oeverhaus M, Koenen J, Bechrakis N. et al. Radioiodine ablation of thyroid remnants in patients with Gravesʼ orbitopathy. J Nucl Med 2023; 64: 561-566
  • 91 Traisk F, Tallstedt L, Abraham-Nordling M. et al. Thyroid-associated ophthalmopathy after treatment for Gravesʼ hyperthyroidism with antithyroid drugs or iodine-131. J Clin Endocrinol Metab 2009; 94: 3700-3707
  • 92 Torring O, Tallstedt L, Wallin G. et al. Gravesʼ hyperthyroidism: treatment with antithyroid drugs, surgery, or radioiodine–a prospective, randomized study. Thyroid Study Group. J Clin Endocrinol Metab 1996; 81: 2986-2993
  • 93 Vannucchi G, Covelli D, Campi I. et al. Prevention of Orbitopathy by Oral or Intravenous Steroid Prophylaxis in Short Duration Gravesʼ Disease Patients Undergoing Radioiodine Ablation: A Prospective Randomized Control Trial Study. Thyroid 2019; 29: 1828-1833
  • 94 Vannucchi G, Campi I, Covelli D. et al. Gravesʼ orbitopathy activation after radioactive iodine therapy with and without steroid prophylaxis. J Clin Endocrinol Metab 2009; 94: 3381-3386
  • 95 Tanda ML, Lai A, Bartalena L. Relation between Gravesʼ orbitopathy and radioiodine therapy for hyperthyroidism: facts and unsolved questions. Clin Endocrinol (Oxf) 2008; 69: 845-847
  • 96 Dederichs B, Dietlein M, Jenniches-Kloth B. et al. Radioiodine therapy of Gravesʼ hyperthyroidism in patients without pre-existing ophthalmopathy: can glucocorticoids prevent the development of new ophthalmopathy?. Exp Clin Endocrinol Diabetes 2006; 114: 366-370
  • 97 Bartalena L, Piantanida E, Gallo D. et al. Epidemiology, Natural History, Risk Factors, and Prevention of Gravesʼ Orbitopathy. Front Endocrinol (Lausanne) 2020; 11: 615993
  • 98 Tanda ML, Piantanida E, Liparulo L. et al. Prevalence and natural history of Gravesʼ orbitopathy in a large series of patients with newly diagnosed Gravesʼ hyperthyroidism seen at a single center. J Clin Endocrinol Metab 2013; 98: 1443-1449
  • 99 Perros P, Zarkovic M, Azzolini C. et al. PREGO (presentation of Gravesʼ orbitopathy) study: changes in referral patterns to European Group On Gravesʼ Orbitopathy (EUGOGO) centres over the period from 2000 to 2012. Br J Ophthalmol 2015; 99: 1531-1535
  • 100 Schuh A, Ayvaz G, Baldeschi L. et al. Presentation of Gravesʼ orbitopathy within European Group On Gravesʼ Orbitopathy (EUGOGO) centres from 2012 to 2019 (PREGO III). Br J Ophthalmol 2023;
  • 101 Eckstein A, Schittkowski M, Esser J. Surgical treatment of Gravesʼ ophthalmopathy. Best Pract Res Clin Endocrinol Metab 2012; 26: 339-358
  • 102 Marino M, Morabito E, Brunetto MR. et al. Acute and severe liver damage associated with intravenous glucocorticoid pulse therapy in patients with Gravesʼ ophthalmopathy. Thyroid 2004; 14: 403-406
  • 103 Negro R, Hegedus L, Attanasio R. et al. A 2018 European Thyroid Association Survey on the Use of Selenium Supplementation in Gravesʼ Hyperthyroidism and Gravesʼ Orbitopathy. Eur Thyroid J 2019; 8: 7-15
  • 104 Broen JCA, van Laar JM. Mycophenolate mofetil, azathioprine and tacrolimus: mechanisms in rheumatology. Nat Rev Rheumatol 2020; 16: 167-178
  • 105 Quah Qin Xian N, Alnahrawy A, Akshikar R. et al. Real-World Efficacy and Safety of Mycophenolate Mofetil in Active Moderate-to-Sight-Threatening Thyroid Eye Disease. Clin Ophthalmol 2021; 15: 1921-1932
  • 106 Zhang L, Grennan-Jones F, Draman MS. et al. Possible targets for nonimmunosuppressive therapy of Gravesʼ orbitopathy. J Clin Endocrinol Metab 2014; 99: E1183-E1190
  • 107 Roos JCP, Eglitis V, Murthy R. Inhibition of Fibrotic Contraction by Sirolimus (Rapamycin) in an Ex Vivo Model of Thyroid Eye Disease. Ophthalmic Plast Reconstr Surg 2021; 37: 366-371
  • 108 Chang S, Perry JD, Kosmorsky GS. et al. Rapamycin for treatment of refractory dysthyroid compressive optic neuropathy. Ophthalmic Plast Reconstr Surg 2007; 23: 225-226
  • 109 Roos JCP, Murthy R. Sirolimus (rapamycin) for the targeted treatment of the fibrotic sequelae of Gravesʼ orbitopathy. Eye (Lond) 2019; 33: 679-682
  • 110 Prummel MF, Mourits MP, Blank L. et al. Randomized double-blind trial of prednisone versus radiotherapy in Gravesʼ ophthalmopathy. Lancet 1993; 342: 949-954
  • 111 Johnson KT, Wittig A, Loesch C. et al. A retrospective study on the efficacy of total absorbed orbital doses of 12, 16 and 20 Gy combined with systemic steroid treatment in patients with Gravesʼ orbitopathy. Graefes Arch Clin Exp Ophthalmol 2010; 248: 103-109
  • 112 Tanda ML, Bartalena L. Efficacy and safety of orbital radiotherapy for Gravesʼ orbitopathy. J Clin Endocrinol Metab 2012; 97: 3857-3865
  • 113 Kahaly GJ, Rösler HP, Pitz S. et al. Low- versus high-dose radiotherapy for Gravesʼ ophthalmopathy: a randomized, single blind trial. J Clin Endocrinol Metab 2000; 85: 102-108
  • 114 Sterker I, Tegetmeyer H, Papsdorf K. et al. Effect of combined intravenous glucocorticoids and orbital radiotherapy in restoring driving competency in patients with Gravesʼ orbitopathy. Horm Metab Res 2009; 41: 391-396
  • 115 Shams PN, Ma R, Pickles T. et al. Reduced risk of compressive optic neuropathy using orbital radiotherapy in patients with active thyroid eye disease. Am J Ophthalmol 2014; 157: 1299-1305
  • 116 Gold KG, Scofield S, Isaacson SR. et al. Orbital Radiotherapy Combined With Corticosteroid Treatment for Thyroid Eye Disease-Compressive Optic Neuropathy. Ophthalmic Plast Reconstr Surg 2018; 34: 172-177
  • 117 Marcocci C, Bartalena L, Rocchi R. et al. Long-term safety of orbital radiotherapy for Gravesʼ ophthalmopathy. J Clin Endocrinol Metab 2003; 88: 3561-3566
  • 118 Godfrey KJ, Kazim M. Radiotherapy for Active Thyroid Eye Disease. Ophthalmic Plast Reconstr Surg 2018; 34 (4S Suppl. 1): S98-S104
  • 119 Chen J, Chen G, Sun H. Intravenous rituximab therapy for active Gravesʼ ophthalmopathy: a meta-analysis. Hormones (Athens) 2021; 20: 279-286
  • 120 Vannucchi G, Campi I, Covelli D. et al. Efficacy Profile and Safety of Very Low-Dose Rituximab in Patients with Gravesʼ Orbitopathy. Thyroid 2021; 31: 821-828
  • 121 Gillespie EF, Raychaudhuri N, Papageorgiou KI. et al. Interleukin-6 production in CD40-engaged fibrocytes in thyroid-associated ophthalmopathy: involvement of Akt and NF-kappaB. Invest Ophthalmol Vis Sci 2012; 53: 7746-7753
  • 122 Ueland HO, Ueland GA, Lovas K. et al. Novel inflammatory biomarkers in thyroid eye disease. Eur J Endocrinol 2022; 187: 293-300
  • 123 Leszczynska A, Molins B, Fernandez E. et al. Cytokine production in thyroid eye disease: in vitro effects of dexamethasone and IL-6 blockade with tocilizumab. Graefes Arch Clin Exp Ophthalmol 2019; 257: 2307-2314
  • 124 Dorado Cortez O, Grivet D, Perrillat N. et al. Treatment of corticosteroid-resistant Gravesʼ orbitopathy with tocilizumab: a single-centre prospective study. Orbit 2023; 42: 411-417
  • 125 Moi L, Hamedani M, Ribi C. Long-term outcomes in corticosteroid-refractory Gravesʼ orbitopathy treated with tocilizumab. Clin Endocrinol (Oxf) 2022; 97: 363-370
  • 126 Sanchez-Bilbao L, Martinez-Lopez D, Revenga M. et al. Anti-IL-6 Receptor Tocilizumab in Refractory Gravesʼ Orbitopathy: National Multicenter Observational Study of 48 Patients. J Clin Med 2020; 9: 2816
  • 127 Philipp S, Horstmann M, Hose M. et al. An Early Wave of Macrophage Infiltration Intertwined with Antigen-Specific Proinflammatory T Cells and Browning of Adipose Tissue Characterizes the Onset of Orbital Inflammation in a Mouse Model of Gravesʼ Orbitopathy. Thyroid 2022; 32: 283-293
  • 128 de Lacerda AM, de Souza SAL, Gutfilen B. et al. Technetium-99 m-anti-tumour necrosis factor alpha scintigraphy as promising predictor of response to corticotherapy in chronic active Gravesʼ ophthalmopathy. Clin Physiol Funct Imaging 2019; 39: 135-142
  • 129 Paridaens D, van den Bosch WA, van der Loos TL. et al. The effect of etanercept on Gravesʼ ophthalmopathy: a pilot study. Eye (Lond) 2005; 19: 1286-1289
  • 130 Durrani OM, Reuser TQ, Murray PI. Infliximab: a novel treatment for sight-threatening thyroid associated ophthalmopathy. Orbit 2005; 24: 117-119
  • 131 Komorowski J, Jankiewicz-Wika J, Siejka A. et al. Monoclonal anti-TNFalpha antibody (infliximab) in the treatment of patient with thyroid associated ophthalmopathy. Klin Oczna 2007; 109: 457-460
  • 132 Ayabe R, Rootman DB, Hwang CJ. et al. Adalimumab as steroid-sparing treatment of inflammatory-stage thyroid eye disease. Ophthalmic Plast Reconstr Surg 2014; 30: 415-419
  • 133 Girnita L, Smith TJ, Janssen J. It Takes Two to Tango: IGF-I and TSH Receptors in Thyroid Eye Disease. J Clin Endocrinol Metab 2022; 107 (Suppl. 01) S1-S12
  • 134 Ugradar S, Kang J, Kossler AL. et al. Teprotumumab for the treatment of chronic thyroid eye disease. Eye (Lond) 2022; 36: 1553-1559
  • 135 Diniz SB, Cohen LM, Roelofs KA. et al. Early Experience With the Clinical Use of Teprotumumab in a Heterogenous Thyroid Eye Disease Population. Ophthalmic Plast Reconstr Surg 2021; 37: 583-591
  • 136 Ozzello DJ, Dallalzadeh LO, Liu CY. Teprotumumab for chronic thyroid eye disease. Orbit 2022; 41: 539-546
  • 137 Stan MN, Krieger C. Teprotumumab – A Review of Its Adverse Effects Profile. J Clin Endocrinol Metab 2023; 108: e654-e662
  • 138 Kay-Rivest E, Belinsky I, Kozlova A. et al. Prospective Assessment of Otologic Adverse Events due to Teprotumumab: Preliminary Results. Otolaryngol Head Neck Surg 2023; 168: 1164-1169
  • 139 Roemer A, Staecker H, Sasse S. et al. Biological therapies in otology. HNO 2017; 65: 87-97
  • 140 Yamahara K, Yamamoto N, Nakagawa T. et al. Insulin-like growth factor 1: A novel treatment for the protection or regeneration of cochlear hair cells. Hear Res 2015; 330: 2-9
  • 141 Jain AP, Gellada N, Ugradar S. et al. Teprotumumab reduces extraocular muscle and orbital fat volume in thyroid eye disease. Br J Ophthalmol 2022; 106: 165-171
  • 142 Evans M, Sanders J, Tagami T. et al. Monoclonal autoantibodies to the TSH receptor, one with stimulating activity and one with blocking activity, obtained from the same blood sample. Clin Endocrinol (Oxf) 2010; 73: 404-412
  • 143 Furmaniak J, Sanders J, Young S. et al. In vivo effects of a human thyroid-stimulating monoclonal autoantibody (M22) and a human thyroid-blocking autoantibody (K1–70). Auto Immun Highlights 2012; 3: 19-25
  • 144 Furmaniak J, Sanders J, Clark J. et al. Preclinical studies on the toxicology, pharmacokinetics and safety of K1–70 a human monoclonal autoantibody to the TSH receptor with TSH antagonist activity. Auto Immun Highlights 2019; 10: 11
  • 145 Pearce SHS, Dayan C, Wraith DC. et al. Antigen-Specific Immunotherapy with Thyrotropin Receptor Peptides in Gravesʼ Hyperthyroidism: A Phase I Study. Thyroid 2019; 29: 1003-1011
  • 146 Marcocci C, Bartalena L, Panicucci M. et al. Orbital cobalt irradiation combined with retrobulbar or systemic corticosteroids for Gravesʼ ophthalmopathy: a comparative study. Clin Endocrinol (Oxf) 1987; 27: 33-42
  • 147 Ebner R, Devoto MH, Weil D. et al. Treatment of thyroid associated ophthalmopathy with periocular injections of triamcinolone. Br J Ophthalmol 2004; 88: 1380-1386
  • 148 Lee SJ, Rim TH, Jang SY. et al. Treatment of upper eyelid retraction related to thyroid-associated ophthalmopathy using subconjunctival triamcinolone injections. Graefes Arch Clin Exp Ophthalmol 2013; 251: 261-270
  • 149 Duan M, Xu DD, Zhou HL. et al. Triamcinolone acetonide injection in the treatment of upper eyelid retraction in Gravesʼ ophthalmopathy evaluated by 3.0 Tesla magnetic resonance imaging. Indian J Ophthalmol 2022; 70: 1736-1741
  • 150 Young SM, Kim YD, Lang SS. et al. Transconjunctival Triamcinolone Injection for Upper Lid Retraction in Thyroid Eye Disease-A New Injection Method. Ophthalmic Plast Reconstr Surg 2018; 34: 587-593
  • 151 Xu DD, Chen Y, Xu HY. et al. Long-term effect of triamcinolone acetonide in the treatment of upper lid retraction with thyroid associated ophthalmopathy. Int J Ophthalmol 2018; 11: 1290-1295
  • 152 Lee JM, Lee H, Park M. et al. Subconjunctival injection of triamcinolone for the treatment of upper lid retraction associated with thyroid eye disease. J Craniofac Surg 2012; 23: 1755-1758
  • 153 Rana HS, Akella SS, Clabeaux CE. et al. Ocular surface disease in thyroid eye disease: A narrative review. Ocul Surf 2022; 24: 67-73
  • 154 Eckstein AK, Finkenrath A, Heiligenhaus A. et al. Dry eye syndrome in thyroid-associated ophthalmopathy: lacrimal expression of TSH receptor suggests involvement of TSHR-specific autoantibodies. Acta Ophthalmol Scand 2004; 82: 291-297
  • 155 Ismailova DS, Fedorov AA, Grusha YO. Ocular surface changes in thyroid eye disease. Orbit 2013; 32: 87-90
  • 156 Sullivan BD, Whitmer D, Nichols KK. et al. An objective approach to dry eye disease severity. Invest Ophthalmol Vis Sci 2010; 51: 6125-6130
  • 157 Gilbard JP, Farris RL. Ocular surface drying and tear film osmolarity in thyroid eye disease. Acta Ophthalmol (Copenh) 1983; 61: 108-116
  • 158 Iskeleli G, Karakoc Y, Abdula A. Tear film osmolarity in patients with thyroid ophthalmopathy. Jpn J Ophthalmol 2008; 52: 323-326
  • 159 Takahashi Y, Lee PAL, Vaidya A. et al. Tear film break-up patterns in thyroid eye disease. Sci Rep 2021; 11: 5288
  • 160 Xu N, Cui Y, Fu D. et al. Tear inflammatory cytokines and ocular surface changes in patients with active thyroid eye disease treated with high-dose intravenous glucocorticoids. J Endocrinol Invest 2020; 43: 901-910
  • 161 Mandic JJ, Kozmar A, Kusacic-Kuna S. et al. The levels of 12 cytokines and growth factors in tears: hyperthyreosis vs. euthyreosis. Graefes Arch Clin Exp Ophthalmol 2018; 256: 845-852
  • 162 Huang D, Luo Q, Yang H. et al. Changes of lacrimal gland and tear inflammatory cytokines in thyroid-associated ophthalmopathy. Invest Ophthalmol Vis Sci 2014; 55: 4935-4943
  • 163 Huang D, Xu N, Song Y. et al. Inflammatory cytokine profiles in the tears of thyroid-associated ophthalmopathy. Graefes Arch Clin Exp Ophthalmol 2012; 250: 619-625
  • 164 Park J, Baek S. Dry eye syndrome in thyroid eye disease patients: The role of increased incomplete blinking and Meibomian gland loss. Acta Ophthalmol 2019; 97: e800-e806
  • 165 Gurdal C, Genc I, Sarac O. et al. Topical cyclosporine in thyroid orbitopathy-related dry eye: clinical findings, conjunctival epithelial apoptosis, and MMP-9 expression. Curr Eye Res 2010; 35: 771-777
  • 166 Sun R, Yang M, Lin C. et al. A clinical study of topical treatment for thyroid-associated ophthalmopathy with dry eye syndrome. BMC Ophthalmol 2023; 23: 72
  • 167 Kim YS, Kwak AY, Lee SY. et al. Meibomian gland dysfunction in Gravesʼ orbitopathy. Can J Ophthalmol 2015; 50: 278-282
  • 168 Ebner R. Botulinum toxin type A in upper lid retraction of Gravesʼ ophthalmopathy. J Clin Neuroophthalmol 1993; 13: 258-261
  • 169 Traisk F, Tallstedt L. Thyroid associated ophthalmopathy: botulinum toxin A in the treatment of upper eyelid retraction–a pilot study. Acta Ophthalmol Scand 2001; 79: 585-588
  • 170 Uddin JM, Davies PD. Treatment of upper eyelid retraction associated with thyroid eye disease with subconjunctival botulinum toxin injection. Ophthalmology 2002; 109: 1183-1187
  • 171 Dintelmann T, Sold J, Grehn F. [Botulinum toxin injection-treatment of upper lid retraction in thyroid eye disease]. Ophthalmologe 2005; 102: 247-250
  • 172 Wabbels B. [Botulinumtoxin in Ophthalmology]. Klin Monbl Augenheilkd 2019; 236: 825-836
  • 173 Olver JM. Botulinum toxin A treatment of overactive corrugator supercilii in thyroid eye disease. Br J Ophthalmol 1998; 82: 528-533
  • 174 Dagi LR, Elliott AT, Roper-Hall G. et al. Thyroid eye disease: honing your skills to improve outcomes. J AAPOS 2010; 14: 425-431
  • 175 Saeed P, Tavakoli Rad S, Bisschop P. Dysthyroid Optic Neuropathy. Ophthalmic Plast Reconstr Surg 2018; 34 (4S Suppl. 1): S60-S67
  • 176 Görtz GE, Horstmann M, Aniol B. et al. Hypoxia-Dependent HIF-1 Activation Impacts on Tissue Remodeling in Gravesʼ Ophthalmopathy-Implications for Smoking. J Clin Endocrinol Metab 2016; 101: 4834-4842
  • 177 Curro N, Covelli D, Vannucchi G. et al. Therapeutic outcomes of high-dose intravenous steroids in the treatment of dysthyroid optic neuropathy. Thyroid 2014; 24: 897-905
  • 178 Sears CM, Azad AD, Dosiou C. et al. Teprotumumab for Dysthyroid Optic Neuropathy: Early Response to Therapy. Ophthalmic Plast Reconstr Surg 2021; 37 (3S): S157-S160
  • 179 Sears CM, Wang Y, Bailey LA. et al. Early efficacy of teprotumumab for the treatment of dysthyroid optic neuropathy: A multicenter study. Am J Ophthalmol Case Rep 2021; 23: 101111
  • 180 Hwang CJ, Nichols EE, Chon BH. et al. Bilateral dysthyroid compressive optic neuropathy responsive to teprotumumab. Eur J Ophthalmol 2022; 32: NP46-NP49
  • 181 Lopez MJ, Herring JL, Thomas C. et al. Visual Recovery of Dysthyroid Optic Neuropathy With Teprotumumab. J Neuroophthalmol 2022; 42: e491-e493