Aktuelle Dermatologie 2023; 49(12): 556-564
DOI: 10.1055/a-2189-5714
Übersicht

Diätetische Ansätze in der Tumortherapie

Dietary interventions in tumor therapy
Anna-Sophia Leven
1   Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Deutschland
,
Robin Tamara Eisenburger
1   Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Deutschland
,
Lena Espelage
1   Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Deutschland
,
Alpaslan Tasdogan
1   Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Deutschland
› Author Affiliations

Zusammenfassung

Im Zuge der personalisierten Medizin gewinnen bei Tumorerkrankungen patientenindividuelle Faktoren wie persönliche Ernährungsmuster, der Lebensstil, das intestinale Mikrobiom oder das Geschlecht immer mehr an Bedeutung. Neben anderen Tumorentitäten erlangt auch beim malignen Melanom die Ernährung einen zunehmenden Stellenwert. Durch die Einführung der immun- und zielgerichteten Therapien konnte die Mortalität zwar deutlich gesenkt werden, jedoch zeigt sich ein sehr heterogenes Therapieansprechen. Folglich ist das Bestreben groß, alternative oder unterstützende Faktoren für ein besseres Therapieansprechen zu identifizieren. Präklinische Studien konnten bereits positive Effekte diätetischer Interventionen auf eine Immuntherapie und in der Folge auf das Therapieansprechen zeigen. Z.T. konnte das Ansprechen auf eine Immuntherapie sogar wiederhergestellt werden. Dabei wird angenommen, dass der Zellmetabolismus durch eine bestimmte Nährstoffaufnahme „umprogrammiert“ werden kann. Um diese präklinischen Daten auf die Klinik zu transferieren, werden im Rahmen von klinischen Studien diätetische Interventionen in Kombination mit etablierten Tumortherapien untersucht und dabei deren Auswirkungen auf den Metabolismus der Tumor- und Immunzellen analysiert.

Abstract

In the course of personalized medicine, patient-specific factors such as personal dietary habits, lifestyle, gut microbiome or gender are becoming more and more relevant in the treatment of tumor diseases. Beside other tumor entities, nutrition are becoming increasingly important in malignant melanoma. The introduction of immunotherapy and targeted therapies has significantly reduced mortality, but the response to treatment is often heterogeneous. Therefore, great efforts are being made to identify alternative or supportive factors that may lead to an improved therapy response. Preclinical studies have already shown the positive effects of dietary interventions on immunotherapy and therapy response. In some cases, the response to immunotherapy can be even reversed. It is assumed that the cellular metabolism is ‘reprogrammed’ by specific nutrient intake. In order to translate these pre-clinical data to the clinic, an increasing number of clinical trials are being initiated to assess specific nutritional interventions in combination with established tumor therapies and their effects on the metabolism of tumor cells and immune cells.



Publication History

Article published online:
13 December 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Kumar P, Brazel D, DeRogatis J. et al. The cure from within? A review of the microbiome and diet in melanoma. Cancer and Metastasis Reviews 2022; 41: 261-280
  • 2 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017; 67
  • 3 Siegel RL, Miller KD, Fuchs HE. et al. Cancer Statistics, 2021. CA Cancer J Clin 2021; 71
  • 4 Siegel RL, Miller KD, Fuchs HE. et al. Cancer statistics, 2022. CA Cancer J Clin 2022; 72
  • 5 https://www.krebsdaten.de/Krebs/DE/Content/Krebsarten/Melanom/melanom_node.html
  • 6 Ghisoni E, Wicky A, Bouchaab H. et al. Late-onset and long-lasting immune-related adverse events from immune checkpoint-inhibitors: An overlooked aspect in immunotherapy. Eur J Cancer 2021; 149
  • 7 Yatsunenko T, Rey FE, Manary MJ. et al. Human gut microbiome viewed across age and geography. Nature 2012; 486: 222-227
  • 8 Hopkins BD, Pauli C, Xing D. et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 2018; 560
  • 9 Caffa I, Spagnolo V, Vernieri C. et al. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 2020; 583
  • 10 Maddocks ODK, Athineos D, Cheung EC. et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 2017; 544
  • 11 Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144
  • 12 Chandel NS. Glycolysis. Cold Spring Harb Perspect Biol 2021; 13
  • 13 Warburg O. Origin of cancer cells. Science (1979) 1956; 123: 309-314
  • 14 Heiden MGV, Cantley LC, Thompson CB. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science (1979) 2009; 324: 1029-1033
  • 15 Chandel NS. Metabolism of proliferating cells. Cold Spring Harb Perspect Biol 2021; 13: a040618
  • 16 Hui S, Ghergurovich JM, Morscher RJ. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 2017; 551
  • 17 Faubert B, Li KY, Cai L. et al. Lactate Metabolism in Human Lung Tumors. Cell 2017; 171
  • 18 Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism. Nat Metab 2020; 2
  • 19 Le MT, Frye RF, Rivard CJ. et al. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects. Metabolism 2012; 61: 641-651
  • 20 Jang C, Hui S, Lu W. et al. The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids. Cell Metab 2018; 27
  • 21 Carreño D, Corro N, Torres-Estay V. et al. Fructose and prostate cancer: toward an integrated view of cancer cell metabolism. Prostate Cancer Prostatic Dis 2019; 22: 49-58
  • 22 Taylor SR, Ramsamooj S, Liang RJ. et al. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature 2021; 597
  • 23 Bu P, Chen KY, Xiang K. et al. Aldolase B-Mediated Fructose Metabolism Drives Metabolic Reprogramming of Colon Cancer Liver Metastasis. Cell Metab 2018; 27
  • 24 Weng Y, Fan X, Bai Y. et al. SLC2A5 promotes lung adenocarcinoma cell growth and metastasis by enhancing fructose utilization. Cell Death Discov 2018; 4
  • 25 Chen WL, Jin X, Wang M. et al. GLUT5-mediated fructose utilization drives lung cancer growth by stimulating fatty acid synthesis and AMPK/mTORC1 signaling. JCI Insight 2020; 5
  • 26 DeBerardinis RJ, Mancuso A, Daikhin E. et al. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 2007; 104
  • 27 Neinast MD, Jang C, Hui S. et al. Quantitative Analysis of the Whole-Body Metabolic Fate of Branched-Chain Amino Acids. Cell Metab 2019; 29
  • 28 Mayers JR, Torrence ME, Danai LV. et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science (1979) 2016; 353
  • 29 Hui S, Cowan AJ, Zeng X. et al. Quantitative Fluxomics of Circulating Metabolites. Cell Metab 2020; 32
  • 30 Swinnen JV, Brusselmans K, Verhoeven G. Increased lipogenesis in cancer cells: New players, novel targets. Curr Opin Clin Nutr Metab Care 2006; 9: 358-365
  • 31 Deberardinis RJ, Thompson CB. Cellular metabolism and disease: What do metabolic outliers teach us?. Cell 2012; 148: 1132-1144
  • 32 Santos CR, Schulze A. Lipid metabolism in cancer. FEBS Journal 2012; 279: 2610-2623
  • 33 Di Sebastiano KM, Murthy G, Campbell KL. et al. Nutrition and Cancer Prevention: Why is the Evidence Lost in Translation?. Advances in Nutrition 2019; 10: 410-418
  • 34 Das SK, Saltzman E, Gilhooly CH. et al. Low or Moderate Dietary Energy Restriction for Long-term Weight Loss: What Works Best?. Obesity 2009; 17: 2019-2024
  • 35 Heilbronn LK, De Jonge L, Frisard MI. et al. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: A randomized controlled trial. JAMA 2006; 295
  • 36 Weiss EP, Holloszy JO. Improvements in body composition, glucose tolerance, and insulin action induced by increasing energy expenditure or decreasing energy intake. J Nutr 2007; 137: 1087-1090
  • 37 Moreira EAMH, Most M, Howard J. et al. Dietary adherence to long-term controlled feeding in a calorie-restriction study in overweight men and women. Nutrition in Clinical Practice 2011; 26
  • 38 Dorling JL, Das SK, Racette SB. et al. Changes in body weight, adherence, and appetite during 2 years of calorie restriction: the CALERIE 2 randomized clinical trial. Eur J Clin Nutr 2020; 74
  • 39 Shaikh H, Bradhurst P, Ma LX. et al. Body weight management in overweight and obese breast cancer survivors. Cochrane Database of Systematic Reviews 2020; 2020
  • 40 Rous P. The influence of diet on transplanted and spontaneous mouse tumors. Journal of Experimental Medicine 1914; 20
  • 41 Lv M, Zhu X, Wang H. et al. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: A systematic review and meta-analysis. PLoS One 2014; 9
  • 42 Pomatto-Watson LCD, Bodogai M, Bosompra O. et al. Daily caloric restriction limits tumor growth more effectively than caloric cycling regardless of dietary composition. Nat Commun 2021; 12
  • 43 Castejón M, Plaza A, Martinez-Romero J. et al. Energy restriction and colorectal cancer: A call for additional research. Nutrients 2020; 12: 114
  • 44 Kalaany NY, Sabatini DM. Tumours with PI3K activation are resistant to dietary restriction. Nature 2009; 458
  • 45 Pearson KJ, Lewis KN, Price NL. et al. Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci U S A 2008; 105
  • 46 Lien EC, Westermark AM, Zhang Y. et al. Low glycaemic diets alter lipid metabolism to influence tumour growth. Nature 2021; 599
  • 47 Man FM de, Eerden RAG van, Doorn GM van. et al. Effects of Protein and Calorie Restriction on the Metabolism and Toxicity Profile of Irinotecan in Cancer Patients. Clin Pharmacol Ther 2021; 109
  • 48 Orgel E, Framson C, Buxton R. et al. Caloric and nutrient restriction to augment chemotherapy efficacy for acute lymphoblastic leukemia: The IDEAL trial. Blood Adv 2021; 5
  • 49 Goodwin PJ, Segal RJ, Vallis M. et al. The LISA randomized trial of a weight loss intervention in postmenopausal breast cancer. NPJ Breast Cancer 2020; 6
  • 50 Goodwin PJ, Segal RJ, Vallis M. et al. Randomized trial of a telephone-based weight loss intervention in postmenopausal women with breast cancer receiving letrozole: The LISA trial. Journal of Clinical Oncology 2014; 32
  • 51 Ligibel JA, Barry WT, Alfano C. et al. Randomized phase III trial evaluating the role of weight loss in adjuvant treatment of overweight and obese women with early breast cancer (Alliance A011401): study design. NPJ Breast Cancer 2017; 3: 37
  • 52 Mitchell SJ, Bernier M, Mattison JA. et al. Daily Fasting Improves Health and Survival in Male Mice Independent of Diet Composition and Calories. Cell Metab 2019; 29
  • 53 Pak HH, Haws SA, Green CL. et al. Fasting drives the metabolic, molecular and geroprotective effects of a calorie-restricted diet in mice. Nat Metab 2021; 3
  • 54 Jordan S, Tung N, Casanova-Acebes M. et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell 2019; 178
  • 55 Lee C, Raffaghello L, Brandhorst S. et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med 2012; 4
  • 56 Brandhorst S, Choi IY, Wei M. et al. A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metab 2015; 22
  • 57 Salvadori G, Zanardi F, Iannelli F. et al. Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escape. Cell Metab 2021; 33
  • 58 D’Aronzo M, Vinciguerra M, Mazza T. et al. Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models. Oncotarget 2015; 6
  • 59 Valdemarin F, Caffa I, Persia A. et al. Safety and feasibility of fasting-mimicking diet and effects on nutritional status and circulating metabolic and inflammatory factors in cancer patients undergoing active treatment. Cancers (Basel) 2021; 13
  • 60 Groot S de, Lugtenberg RT, Cohen D. et al. Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nat Commun 2020; 11: 3083
  • 61 Vernieri C, Fucà G, Ligorio F. et al. Fasting-Mimicking Diet Is Safe and Reshapes Metabolism and Antitumor Immunity in Patients with Cancer. Cancer Discov 2022; 12: 90-107
  • 62 Vernieri C, Signorelli D, Galli G. et al. Exploiting FAsting-mimicking Diet and MEtformin to Improve the Efficacy of Platinum-pemetrexed Chemotherapy in Advanced LKB1-inactivated Lung Adenocarcinoma: The FAME Trial. Clin Lung Cancer 2019; 20
  • 63 Bauersfeld SP, Kessler CS, Wischnewsky M. et al. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: A randomized cross-over pilot study. BMC Cancer 2018; 18
  • 64 Safdie FM, Dorff T, Quinn D. et al. Fasting and cancer treatment in humans: A case series report. Aging 2009; 1
  • 65 Trepanowski JF, Kroeger CM, Barnosky A. et al. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: A randomized clinical trial. JAMA Intern Med 2017; 177
  • 66 Nencioni A, Caffa I, Cortellino S. et al. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer 2018; 18
  • 67 Wei M, Brandhorst S, Shelehchi M. et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med 2017; 9
  • 68 Kraeuter AK, Guest PC, Sarnyai Z. Protocol for the Use of the Ketogenic Diet in Preclinical and Clinical Practice. Methods Mol Biol 2020; 2138: 83-98
  • 69 Zhou W, Mukherjee P, Kiebish MA. et al. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab (Lond) 2007; 4
  • 70 Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. Journal of General Physiology 1927; 8
  • 71 Ferrere G, Tidjani Alou M, Liu P. et al. Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade. JCI Insight 2021; 6
  • 72 Chlebowski RT, Aragaki AK, Anderson GL. et al. Low-fat dietary pattern and breast cancer mortality in the Women’s Health Initiative randomized controlled trial. J Clin Oncol 2017; 35: 2919-2926
  • 73 Chlebowski RT, Aragaki AK, Anderson GL. et al. Association of Low-Fat Dietary Pattern with Breast Cancer Overall Survival: A Secondary Analysis of the Women’s Health Initiative Randomized Clinical Trial. JAMA Oncol 2018; 4
  • 74 Thomson CA, Van Horn L, Caan BJ. et al. Cancer incidence and mortality during the intervention and postintervention periods of the women’s health initiative dietary modification trial. Cancer Epidemiology Biomarkers and Prevention 2014; 23
  • 75 Pierce JP, Natarajan L, Caan BJ. et al. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: The Women’s Healthy Eating and Living (WHEL) randomized trial. JAMA 2007; 298
  • 76 Chlebowski RT, Blackburn GL, Thomson CA. et al. Dietary Fat Reduction and Breast Cancer Outcome: Interim Efficacy Results From the Women’s Intervention Nutrition Study. JNCI: Journal of the National Cancer Institute 2006; 98: 1767-1776
  • 77 Gold EB, Pierce JP, Natarajan L. et al. Dietary Pattern Influences Breast Cancer Prognosis in Women Without Hot Flashes: The Women’s Healthy Eating and Living Trial. Journal of Clinical Oncology 2009; 27: 352-359
  • 78 Rose DP, Connolly JM, Chlebowski RT. et al. The effects of a low-fat dietary intervention and tamoxifen adjuvant therapy on the serum estrogen and sex hormone-binding globulin concentrations of postmenopausal breast cancer patients. Breast Cancer Res Treat 1993; 27: 253-262
  • 79 Rock CL, Flatt SW, Thomson CA. et al. Effects of a High-Fiber, Low-Fat Diet Intervention on Serum Concentrations of Reproductive Steroid Hormones in Women With a History of Breast Cancer. Journal of Clinical Oncology 2004; 22: 2379-2387
  • 80 Waure C de, Quaranta G, Gualano MR. et al. Systematic review of studies investigating the association between dietary habits and cutaneous malignant melanoma. Public Health 2015; 129: 1099-1113
  • 81 Rubio-Patiño C, Bossowski JP, De Donatis GM. et al. Low-Protein Diet Induces IRE1α-Dependent Anticancer Immunosurveillance. Cell Metab 2018; 27
  • 82 Tajan M, Vousden KH. Dietary Approaches to Cancer Therapy. Cancer Cell 2020; 37: 767-785
  • 83 Tajan M, Hennequart M, Cheung EC. et al. Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nat Commun 2021; 12
  • 84 Turnbaugh PJ, Ridaura VK, Faith JJ. et al. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 2009; 1
  • 85 Mentella MC, Scaldaferri F, Ricci C. et al. Cancer and Mediterranean Diet: A Review. Nutrients 2019; 11: 2059
  • 86 Gallagher EJ, LeRoith D. Hyperinsulinaemia in cancer. Nat Rev Cancer 2020; 20: 629-644
  • 87 Hopkins BD, Goncalves MD, Cantley LC. Obesity and cancer mechanisms: Cancer metabolism. Journal of Clinical Oncology 2016; 34: 4277-4283
  • 88 Monaco ME. Fatty acid metabolism in breast cancer subtypes. Oncotarget 2017; 8: 29487-29500
  • 89 Treasure M, Thomas A, Ganocy S. et al. A pilot study of a low glycemic load diet in patients with stage I-III colorectal cancer. J Gastrointest Oncol 2021; 12: 910-920