Subscribe to RSS
DOI: 10.1055/a-2190-3385
Retainer im MRT – Belassen oder Entfernen?
Retainer in the MRI – Leave in Place or Remove?Zusammenfassung
Die Magnetresonanztomographie stellt einen wesentlichen Bestandteil in der Diagnostik dar, nicht nur, da sie als nicht ionisierende Bildgebung den Patienten keiner Röntgenstrahlung aussetzt, sondern auch, da sie in ihrer Darstellung des Weichgewebes röntgenologischen Untersuchungen überlegen ist. Obgleich von der MRT aufgrund der strahlenfreien Bildgebung keine direkten Gefahren für den Patienten ausgehen, bedingt das statische und das hochfrequente Magnetfeld im MRT dennoch die Beachtung verschiedener Aspekte im Sinne der Patientensicherheit. Zahnärzten und Kieferorthopäden sind bei Entscheidungen mitbeteiligt, da sie häufig bezüglich der vom Patienten getragenen Restaurationen und Apparaturen konsultiert werden. Aus kieferorthopädischer Sicht stehen Retainer hierbei im Fokus, da sie anders als alle anderen kieferorthopädischen Apparaturen im Regelfall ein Leben lang in situ verbleiben und damit die MRT-Bildgebung bis ins hohe Alter limitieren können.
Wie die meisten dentalen Apparaturen bzw. Restaurationen bestehen nahezu alle Retainer aus ferromagnetischen Werkstoffen, welche sich durch das zur MRT-Bildgebung verwendete Hochfrequenzfeld erwärmen können. Aufgrund des statischen Magnetfelds wirken auf Retainer darüber hinaus sowohl Rotations- als auch Translationskräfte, über deren Ausmaß und Auswirkung auf die Patientensicherheit oft Unklarheit bei vielen Zahnärzten besteht. Neben beiden sicherheitsrelevanten Aspekten gilt zu beachten, dass Retainer, wie alle anderen metallischen kieferorthopädischen Apparaturen, Artefakte in der MRT verursachen. Diese können die Bildqualität erheblich limitieren und eine Diagnose erschweren.
Der folgende Artikel umfasst einen Überblick über die relevanten Punkte, die es vor der Entscheidung über eine eventuelle Entfernung des jeweiligen Retainers bei einer MRT-Aufnahme zu beachten gilt.
Abstract
Magnetic resonance imaging represents an essential component in diagnostics, not only because it does not expose the patient to X-rays as it is a non-ionizing imaging technique, but also because it is superior to X-ray examinations in its depiction of soft tissue. Although MRI does not pose any direct risks to the patient due to its radiation-free imaging, the static and high-frequency magnetic field in MRI nevertheless requires attention to various aspects in terms of patient safety. Dentists and orthodontists are involved in decision-making as they are often consulted regarding the restorations and appliances worn by the patient. From an orthodontic perspective, retainers are the focus here because, unlike all other orthodontic appliances, they usually remain in situ for the rest of the patient's life and can therefore limit MRI imaging into old age.
Like most dental appliances and restorations, almost all retainers are made of ferromagnetic materials that can be heated by the high-frequency field used for MRI imaging. Due to the static magnetic field, retainers are also subject to both rotational and translational forces, the extent and impact of which on patient safety is often unclear to many dentists. In addition to both safety aspects, it should be noted that retainers, like all other metallic orthodontic appliances, cause artifacts in MRI. These can significantly limit image quality and impede the diagnosis.
The following article provides an overview of the relevant points to consider before deciding whether to remove the respective retainer before an MRI scan.
Schlüssselwörter
Magnet Resonanz Tomografie - Artefakte - festsitzende Retainer - CAD/CAM - TwistflexPublication History
Article published online:
07 December 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Smith-Bindman R, Miglioretti DL, Johnson E. et al. Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996-2010. JAMA 2012; 307: 2400-2409
- 2 Smith-Bindman R, Kwan ML, Marlow EC. et al. Trends in Use of Medical Imaging in US Health Care Systems and in Ontario, Canada, 2000-2016. JAMA 2019; 322: 843-856
- 3 Gaudino C, Cosgarea R, Heiland S. et al. MR-Imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT. Eur Radiol 2011; 21: 2575-2583
- 4 Schara R, Sersa I, Skaleric U. T1 relaxation time and magnetic resonance imaging of inflamed gingival tissue. Dentomaxillofac Radiol 2009; 38: 216-223
- 5 Juerchott A, Sohani M, Schwindling FS. et al. In vivo accuracy of dental magnetic resonance imaging in assessing maxillary molar furcation involvement: a feasibility study in humans. J Clin Periodontol 2020;
- 6 Juerchott A, Sohani M, Schwindling FS. et al. Comparison of non-contrast-enhanced dental magnetic resonance imaging and cone-beam computed tomography in assessing the horizontal and vertical components of furcation defects in maxillary molars: An in vivo feasibility study. J Clin Periodontol 2020; 47: 1485-1495
- 7 Probst M, Burian E, Robl T. et al. Magnetic resonance imaging as a diagnostic tool for periodontal disease: A prospective study with correlation to standard clinical findings-Is there added value?. J Clin Periodontol 2021; 48: 929-948
- 8 Kress B, Buhl Y, Anders L. et al. Quantitative analysis of MRI signal intensity as a tool for evaluating tooth pulp vitality. Dentomaxillofac Radiol 2004; 33: 241-244
- 9 Juerchott A, Pfefferle T, Flechtenmacher C. et al. Differentiation of periapical granulomas and cysts by using dental MRI: a pilot study. Int J Oral Sci 2018; 10: 17
- 10 Iohara K, Fujita M, Ariji Y. et al. Assessment of Pulp Regeneration Induced by Stem Cell Therapy by Magnetic Resonance Imaging. J Endod 2016; 42: 397-401
- 11 Lizio G, Salizzoni E, Coe M. et al. Differential diagnosis between a granuloma and radicular cyst: effectiveness of magnetic resonance imaging. Int Endod J 2018; 51: 1077-1087
- 12 Juerchott A, Jelinek C, Kronsteiner D. et al. Quantitative assessment of contrast-enhancement patterns of the healthy dental pulp by magnetic resonance imaging: A prospective in vivo study. Int Endod J 2022; 55: 252-262
- 13 Ariji Y, Ariji E, Nakashima M. et al. Magnetic resonance imaging in endodontics: a literature review. Oral Radiol 2018; 34: 10-16
- 14 Cankar K, Vidmar J, Nemeth L. et al. T2 Mapping as a Tool for Assessment of Dental Pulp Response to Caries Progression: An in vivo MRI Study. Caries Res 2020; 54: 24-35
- 15 Korn P, Elschner C, Schulz MC. et al. MRI and dental implantology: two which do not exclude each other. Biomaterials 2015; 53: 634-645
- 16 Hilgenfeld T, Juerchott A, Jende JME. et al. Use of dental MRI for radiation-free guided dental implant planning: a prospective, in vivo study of accuracy and reliability. Eur Radiol 2020; 30: 6392-6401
- 17 Probst FA, Schweiger J, Stumbaum MJ. et al. Magnetic resonance imaging based computer-guided dental implant surgery-A clinical pilot study. Clin Implant Dent Relat Res 2020; 22: 612-621
- 18 Schwindling FS, Juerchott A, Boehm S. et al. Three-dimensional accuracy of partially guided implant surgery based on dental magnetic resonance imaging. Clin Oral Implants Res 2021; 32: 1218-1227
- 19 Wanner L, Ludwig U, Hovener JB. et al. Magnetic resonance imaging – a diagnostic tool for postoperative evaluation of dental implants: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 125: e103-e107
- 20 Heil A, Lazo Gonzalez E, Hilgenfeld T. et al. Lateral cephalometric analysis for treatment planning in orthodontics based on MRI compared with radiographs: A feasibility study in children and adolescents. PLoS One 2017; 12: e0174524
- 21 Maspero C, Abate A, Bellincioni F. et al. Comparison of a tridimensional cephalometric analysis performed on 3T-MRI compared with CBCT: a pilot study in adults. Prog Orthod 2019; 20: 40
- 22 Juerchott A, Freudlsperger C, Weber D. et al. In vivo comparison of MRI- and CBCT-based 3D cephalometric analysis: beginning of a non-ionizing diagnostic era in craniomaxillofacial imaging?. Eur Radiol 2020; 30: 1488-1497
- 23 Eley KA, Watt-Smith SR, Golding SJ. "Black Bone" MRI: a potential non-ionizing method for three-dimensional cephalometric analysis – a preliminary feasibility study. Dentomaxillofac Radiol 2013; 42: 20130236
- 24 Landrigan C. Preventable deaths and injuries during magnetic resonance imaging. The New England journal of medicine 2001; 345: 1000-1001
- 25 Achenbach S, Moshage W, Diem B. et al. Effects of magnetic resonance imaging on cardiac pacemakers and electrodes. Am Heart J 1997; 134: 467-473
- 26 Krupa K, Bekiesinska-Figatowska M. Artifacts in magnetic resonance imaging. Pol J Radiol 2015; 80: 93-106
- 27 Elison JM, Leggitt VL, Thomson M. et al. Influence of common orthodontic appliances on the diagnostic quality of cranial magnetic resonance images. Am J Orthod Dentofacial Orthop 2008; 134: 563-572
- 28 Tymofiyeva O, Vaegler S, Rottner K. et al. Influence of dental materials on dental MRI. Dentomaxillofac Radiol 2013; 42: 20120271
- 29 Beau A, Bossard D, Gebeile-Chauty S. Magnetic resonance imaging artefacts and fixed orthodontic attachments. Eur J Orthod 2015; 37: 105-110
- 30 Ozawa E, Honda EI, Parakonthun KN. et al. Influence of orthodontic appliance-derived artifacts on 3-T MRI movies. Prog Orthod 2018; 19: 7
- 31 Zhylich D, Krishnan P, Muthusami P. et al. Effects of orthodontic appliances on the diagnostic quality of magnetic resonance images of the head. Am J Orthod Dentofacial Orthop 2017; 151: 484-499
- 32 Hilgenfeld T, Prager M, Schwindling FS. et al. Artefacts of implant-supported single crowns - Impact of material composition on artefact volume on dental MRI. Eur J Oral Implantol 2016; 9: 301-308
- 33 Costa AL, Appenzeller S, Yasuda CL. et al. Artifacts in brain magnetic resonance imaging due to metallic dental objects. Medicina oral, patologia oral y cirugia bucal 2009; 14: E278-E282
- 34 Booth FA, Edelman JM, Proffit WR. Twenty-year follow-up of patients with permanently bonded mandibular canine-to-canine retainers. Am J Orthod Dentofacial Orthop 2008; 133: 70-76
- 35 Sawyer-Glover AM, Shellock FG. Pre-MRI procedure screening: recommendations and safety considerations for biomedical implants and devices. J Magn Reson Imaging 2000; 12: 92-106
- 36 Klocke A, Kemper J, Schulze D. et al. Magnetic field interactions of orthodontic wires during magnetic resonance imaging (MRI) at 1.5 Tesla. J Orofac Orthop 2005; 66: 279-287
- 37 Klocke A, Kahl-Nieke B, Adam G. et al. Magnetic forces on orthodontic wires in high field magnetic resonance imaging (MRI) at 3 tesla. J Orofac Orthop 2006; 67: 424-429
- 38 Sfondrini MF, Preda L, Calliada F. et al. Magnetic Resonance Imaging and Its Effects on Metallic Brackets and Wires: Does It Alter the Temperature and Bonding Efficacy of Orthodontic Devices?. Materials (Basel) 2019; 12
- 39 Hasegawa M, Miyata K, Abe Y. et al. Radiofrequency heating of metallic dental devices during 3.0 T MRI. Dentomaxillofac Radiol 2013; 42: 20120234
- 40 Görgülü S, Ayyildiz S, Kamburoglu K. et al. Effect of orthodontic brackets and different wires on radiofrequency heating and magnetic field interactions during 3-T MRI. Dentomaxillofac Radiol 2014; 43: 20130356
- 41 Regier M, Kemper J, Kaul MG. et al. Radiofrequency-induced heating near fixed orthodontic appliances in high field MRI systems at 3.0 Tesla. J Orofac Orthop 2009; 70: 485-494
- 42 Roser C, Hilgenfeld T, Sen S. et al. Evaluation of magnetic resonance imaging artifacts caused by fixed orthodontic CAD/CAM retainers-an in vitro study. Clin Oral Investig 2020;
- 43 Roser CJ, Hilgenfeld T, Saleem MA. et al. In vivo assessment of artefacts in MRI images caused by conventional twistflex and various fixed orthodontic CAD/CAM retainers. J Orofac Orthop 2023;
- 44 Blankenstein FH, Asbach P, Beuer F. et al. Magnetic permeability as a predictor of the artefact size caused by orthodontic appliances at 1.5 T magnetic resonance imaging. Clin Oral Investig 2017; 21: 281-289
- 45 Zachriat C, Asbach P, Blankenstein KI. et al. MRI with intraoral orthodontic appliance-a comparative in vitro and in vivo study of image artefacts at 1.5 T. Dentomaxillofac Radiol 2015; 44: 20140416
- 46 Sonesson M, Al-Qabandi F, Mansson S. et al. Orthodontic appliances and MR image artefacts: An exploratory in vitro and in vivo study using 1.5-T and 3-T scanners. Imaging Sci Dent 2021; 51: 63-71
- 47 Aizenbud D, Hazan-Molina H, Einy S. et al. Craniofacial magnetic resonance imaging with a gold solder-filled chain-like wire fixed orthodontic retainer. J Craniofac Surg 2012; 23: e654-e657
- 48 Shalish M, Dykstein N, Friedlander-Barenboim S. et al. Influence of common fixed retainers on the diagnostic quality of cranial magnetic resonance images. Am J Orthod Dentofacial Orthop 2015; 147: 604-609
- 49 Zachrisson BU. Multistranded wire bonded retainers: from start to success. Am J Orthod Dentofacial Orthop 2015; 148: 724-727
- 50 Ghantous Y, Abu Elnaaj I. [Global Incidence and Risk Factors of Oral Cancer]. Harefuah 2017; 156: 645-649
- 51 Nocini R, Lippi G, Mattiuzzi C. Biological and epidemiologic updates on lip and oral cavity cancers. Annals of Cancer Epidemiology. 2020 4.
- 52 Flugge T, Ludwig U, Hovener JB. et al. Virtual implant planning and fully guided implant surgery using magnetic resonance imaging-Proof of principle. Clin Oral Implants Res 2020; 31: 575-583
- 53 Chinvipas N, Hasegawa Y, Terada K. Repeated bonding of fixed retainer increases the risk of enamel fracture. Odontology 2014; 102: 89-97