Fortschr Neurol Psychiatr 2023; 91(12): 494-502
DOI: 10.1055/a-2190-8957
Übersichtsarbeit

Zerebrale Mikroangiopathie: Fortschritte im Verständnis der Pathophysiologie

Cerebral Small Vessel Disease: Advances in Understanding its Pathophysiology
1   Neurologie, Otto-von-Guericke-Universität Magdeburg Medizinische Fakultät, Magdeburg, Germany
,
Sven Günther Meuth
2   Neurologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
,
Stefanie Schreiber
1   Neurologie, Otto-von-Guericke-Universität Magdeburg Medizinische Fakultät, Magdeburg, Germany
› Author Affiliations

Zusammenfassung

Die sporadische zerebrale Mikroangiopathie umfasst altersabhängige Veränderungen der kleinen Hirngefäße, die durch das Vorliegen vaskulärer Risikofaktoren beschleunigt werden. Die mikrovaskulären Wandveränderungen entwickeln sich eher langsam, mit möglichem Beginn bereits in der mittleren Lebensphase – über Dekaden – und zeigen einen stadienhaften Verlauf. Dieser wird durch eine Aktivierung von Zellen der neurovaskulären Einheit, wie Endothel und Perizyten, induziert und setzt sich dann über eine Blut-Hirn-Schranken-Störung, den Umbau der extrazellulären Matrix und Neuroinflammation zu den Spätstadien aus Blutungen, synaptischer und neuronaler Dysfunktion fort. Begleitend kommt es bereits früh zu Störungen der perivaskulären Drainage von neurotoxischen Substanzen und deren Akkumulation im Hirngewebe. Die Diagnose der Mikroangiopathie erfolgt allgemein im Wesentlichen anhand der “Standards for Reporting Vascular Changes on Neuroimaging 2” in der Magnetresonanztomographie, und die der zerebralen Amyloidangiopathie im Speziellen anhand der neuen Boston-Version-2.0 Kriterien. Klinisch kann die Mikroangiopathie asymptomatisch verlaufen oder sich in einem sehr heterogenen phänotypischen Spektrum manifestieren. Kognitive Defizite und Schlaganfallsymptome sind hier, je nach Kohorte, sicher die häufigsten Präsentationen. In der Therapie und Beratung betroffener Patienten steht die Kontrolle vaskulärer Risikofaktoren sowie die Empfehlung körperlicher und kognitiver Aktivität zusammen mit einer guten Schlafhygiene, die die perivaskuläre Drainage fördert, im Vordergrund. Herausfordernd bleiben individuelle Konstellationen der Ischämieprävention durch Antikoagulantien bei gleichzeitig hohem Hirnblutungsrisiko, v. a. bei Vorliegen einer kortikalen superfizialen Siderose. Die sehr dynamischen wissenschaftlichen und translationalen Entwicklungen im Feld der zerebralen Mikroangiopathie zielen auf die Etablierung von Bildgebungs- und anderen Biomarkern, z. B. in Blut und Liquor, ab, die bereits die frühen Krankheitsstadien erfassen, bevor es zur Hirnparenchymschädigung und klinischen Symptomen kommt. Entsprechend fokussiert werden sich neue Therapieansätze auch dezidiert auf die Stabilisierung der neurovaskulären Einheit und eine Verbesserung der Drainagefunktion konzentrieren. Die Mikrovaskulatur und deren Veränderungen spielen auch für das Verständnis anderer neurologischer Erkrankungen aus dem Feld der primären Neuroimmunologie und Neurodegeneration eine zentrale Rolle. Einige, bisher als separate, neurologische Entitäten betrachtete Erkrankungen könnten zukünftig folglich zunehmend als Spektrum ähnlicher pathophysiologischer Prozesse verstanden werden. Das legt perspektivisch den Grundstein für die Entwicklung und Anwendung überlappender Therapiekonzepte.

Abstract

Sporadic cerebral small vessel disease determines age- and vascular-risk-factor-related processes of the small brain vasculature. The underlying pathology develops in a stage-dependent manner – probably over decades – often already starting in midlife. Endothelial and pericyte activation precedes blood-brain barrier leaks, extracellular matrix remodeling and neuroinflammation, which ultimately result in bleeds, synaptic and neural dysfunction. Hemodynamic compromise of the small vessel walls promotes perivascular drainage failure and accumulation of neurotoxic waste products in the brain. Clinical diagnosis is mainly based on magnetic resonance imaging according to the Standards for Reporting Vascular Changes on Neuroimaging 2. Cerebral amyloid angiopathy is particularly stratified according to the Boston v2.0 criteria. Small vessel disease of the brain could be clinically silent, or manifested through a heterogeneous spectrum of diseases, where cognitive decline and stroke-related symptoms are the most common ones. Prevention and therapy are centered around vascular risk factor control, physically and cognitively enriched life style and, presumably, maintenance of a good sleep quality, which promotes sufficient perivascular drainage. Prevention of ischemic stroke through anticoagulation that carries at the same time an increased risk for large brain hemorrhages – particularly in the presence of disseminated cortical superficial siderosis – remains one of the main challenges. The cerebral small vessel disease field is rapidly evolving, focusing on the establishment of early disease stage imaging and biofluid biomarkers of neurovascular unit remodeling and the compromise of perivascular drainage. New prevention and therapy strategies will correspondingly center around the dedicated targeting of, e. g., cellular small vessel wall and perivascular tissue structures. Growing knowledge about brain microvasculature bridging neuroimmunological, neurovascular and neurodegenerative fields might lead to a rethink about apparently separate disease entities and the development of overarching concepts for a common line of prevention and treatment for several diseases.



Publication History

Received: 04 July 2023

Accepted: 06 October 2023

Article published online:
11 December 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Cannistraro RJ, Badi M, Eidelman BH. et al. CNS small vessel disease: A clinical review. Neurology 2019; 92: 1146-1156
  • 2 Schreiber S, Wilisch-Neumann A, Schreiber F. et al. Invited Review: The spectrum of age-related small vessel diseases: potential overlap and interactions of amyloid and nonamyloid vasculopathies. Neuropathol Appl Neurobiol 2020; 46: 219-239
  • 3 Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol 2019; 18: 684-696
  • 4 Jellinger KA, Attems J. Neuropathological evaluation of mixed dementia. J Neurol Sci 2007; 257: 80-87
  • 5 Duering M, Biessels GJ, Brodtmann A. et al. Neuroimaging standards for research into small vessel disease-advances since 2013. Lancet Neurol 2023
  • 6 Matsuda K, Shindo A, Ii Y. et al. Investigation of hypertensive arteriopathy-related and cerebral amyloid angiopathy-related small vessel disease scores in patients from a memory clinic: a prospective single-centre study. BMJ Open 2021; 11: e042550
  • 7 Charidimou A, Boulouis G, Frosch MP. et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI-neuropathology diagnostic accuracy study. Lancet Neurol 2022; 21: 714-725
  • 8 Charidimou A, Boulouis G, Gurol ME. et al. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain 2017; 140: 1829-1850
  • 9 Wagner A, Maderer J, Wilfling S. et al. Cerebrovascular Risk Factors in Possible or Probable Cerebral Amyloid Angiopathy, Modifier or Bystander?. Front Neurol 2021; 12: 676931
  • 10 Duperron M-G, Knol MJ, Le Grand Q. et al. Genomics of perivascular space burden unravels early mechanisms of cerebral small vessel disease. Nat Med 2023; 29: 950-962
  • 11 Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 2013; 62: 263-271
  • 12 Furman D, Campisi J, Verdin E. et al. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019; 25: 1822-1832
  • 13 Greenberg SM. Vascular Contributions to Brain Health: Cross-Cutting Themes. Stroke 2022; 53: 391-393
  • 14 Livingston G, Huntley J, Sommerlad A. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020; 396: 413-446
  • 15 Tian YE, Cropley V, Maier AB. et al. Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nat Med 2023; 29: 1221-1231
  • 16 Rashid T, Li K, Toledo JB. et al. Association of Intensive vs Standard Blood Pressure Control With Regional Changes in Cerebral Small Vessel Disease Biomarkers: Post Hoc Secondary Analysis of the SPRINT MIND Randomized Clinical Trial. JAMA Netw Open 2023; 6: e231055
  • 17 Williamson JD, Pajewski NM, Auchus AP. et al. Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial. JAMA 2019; 321: 553-561
  • 18 Tabaee Damavandi P, Storti B, Fabin N. et al. Epilepsy in cerebral amyloid angiopathy: an observational retrospective study of a large population. Epilepsia 2023; 64: 500-510
  • 19 Koemans EA, Chhatwal JP, van Veluw SJ. et al. Progression of cerebral amyloid angiopathy: a pathophysiological framework. Lancet Neurol 2023;
  • 20 Charidimou A, Boulouis G, Greenberg SM. et al. Cortical superficial siderosis and bleeding risk in cerebral amyloid angiopathy: A meta-analysis. Neurology 2019; 93: e2192-e2202
  • 21 Raposo N, Charidimou A, Roongpiboonsopit D. et al. Convexity subarachnoid hemorrhage in lobar intracerebral hemorrhage: A prognostic marker. Neurology 2020; 94: e968-e977
  • 22 Seiffge DJ, Paciaroni M, Wilson D. et al. Direct oral anticoagulants versus vitamin K antagonists after recent ischemic stroke in patients with atrial fibrillation. Ann Neurol 2019; 85: 823-834
  • 23 Best JG, Jesuthasan A, Werring DJ. Cerebral small vessel disease and intracranial bleeding risk: Prognostic and practical significance. Int J Stroke 2023; 18: 44-52
  • 24 Du H, Wilson D, Ambler G. et al. Small Vessel Disease and Ischemic Stroke Risk During Anticoagulation for Atrial Fibrillation After Cerebral Ischemia. Stroke 2021; 52: 91-99
  • 25 Charidimou A, Boulouis G, Haley K. et al. White matter hyperintensity patterns in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 2016; 86: 505-511
  • 26 Ter Telgte A, van Leijsen EMC, Wiegertjes K. et al. Cerebral small vessel disease: from a focal to a global perspective. Nat Rev Neurol 2018; 14: 387-398
  • 27 Baranger J, Demene C, Frerot A. et al. Bedside functional monitoring of the dynamic brain connectivity in human neonates. Nat Commun 2021; 12
  • 28 Charidimou A, Farid K, Tsai H-H. et al. Amyloid-PET burden and regional distribution in cerebral amyloid angiopathy: a systematic review and meta-analysis of biomarker performance. J Neurol Neurosurg Psychiatry 2018; 89: 410-417
  • 29 Ulbrich P, Morton L, Briese M, Lämmlin N, Mattern H, Hasanuzzaman M, Westhues M, Khoshneviszadeh M, Appenzeller S, Gündel D, Toussaint M, Brust P, Kniess T, Oelschlegel A, Goldschmidt J, Meuth S, Heinze H-J, Debska-Vielhaber G, Vielhaber S, Becker A, Dityatev A, Jandke S, Sendtner M, Dunay I, Schreiber S. Vascular and neural transcriptomics reveal stage-dependent pathways to inflammation and cognitive dysfunction in a rat model of hypertension 2023;
  • 30 Khoshneviszadeh M, Jandke S, Morton L, Kaushik R, Arndt P, Norman O, Jukkola J, Dunay IR, Seidenbecher C, Heikkinen A, Schreiber S, Dityatev A. Microvascular damage, neuroinflammation and extracellular matrix remodeling in Col18a1 knockout mice as a model for early cerebral small vessel disease 2023;
  • 31 Benveniste H, Nedergaard M. Cerebral small vessel disease: A glymphopathy?. Current Opinion in Neurobiology 2022; 72: 15-21
  • 32 Wardlaw JM, Benveniste H, Nedergaard M. et al. Perivascular spaces in the brain: anatomy, physiology and pathology. Nat Rev Neurol 2020; 16: 137-153
  • 33 Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 2016; 19: 771-783
  • 34 Sweeney MD, Zhao Z, Montagne A. et al. Blood-Brain Barrier: From Physiology to Disease and Back. Physiological Reviews 2019; 99: 21-78
  • 35 Harb R, Whiteus C, Freitas C. et al. In Vivo Imaging of Cerebral Microvascular Plasticity from Birth to Death. J Cereb Blood Flow Metab 2013; 33: 146-156
  • 36 Qu Y, Tan C-C, Shen X-N. et al. Association of Plasma Neurofilament Light With Small Vessel Disease Burden in Nondemented Elderly: A Longitudinal Study. Stroke 2021; 52: 896-904
  • 37 Charidimou A, Friedrich JO, Greenberg SM. et al. Core cerebrospinal fluid biomarker profile in cerebral amyloid angiopathy: A meta-analysis. Neurology 2018; 90: e754-e762
  • 38 Hußler W, Höhn L, Stolz C. et al. Brevican and Neurocan Cleavage Products in the Cerebrospinal Fluid – Differential Occurrence in ALS, Epilepsy and Small Vessel Disease. Front Cell Neurosci 2022; 16: 838432
  • 39 Charidimou A. Cerebrospinal Fluid Biomarkers for Cerebral Amyloid Angiopathy Diagnosis. J Alzheimers Dis 2022; 87: 803-805
  • 40 Montagne A, Barnes SR, Sweeney MD. et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015; 85: 296-302
  • 41 Ollen-Bittle N, Roseborough AD, Wang W. et al. Mechanisms and Biomarker Potential of Extracellular Vesicles in Stroke. Biology (Basel) 2022; 11. 10.3390/biology11081231.
  • 42 Elahi FM, Harvey D, Altendahl M. et al. Elevated complement mediator levels in endothelial-derived plasma exosomes implicate endothelial innate inflammation in diminished brain function of aging humans. Sci Rep 2021; 11: 16198
  • 43 Neumann K, Günther M, Düzel E. et al. Microvascular Impairment in Patients With Cerebral Small Vessel Disease Assessed With Arterial Spin Labeling Magnetic Resonance Imaging: A Pilot Study. Front Aging Neurosci 2022; 14: 871612
  • 44 Rudilosso S, Stringer MS, Thrippleton M. et al. Blood-brain barrier leakage hotspots collocating with brain lesions due to sporadic and monogenic small vessel disease. J Cereb Blood Flow Metab 2023; 271678 X231173444
  • 45 Sala A, Lizarraga A, Caminiti SP. et al. Brain connectomics: time for a molecular imaging perspective?. Trends Cogn Sci 2023; 27: 353-366
  • 46 Ye D, Chen S, Liu Y. et al. Mechanically manipulating glymphatic transport by ultrasound combined with microbubbles. Proc Natl Acad Sci U S A 2023; 120: e2212933120
  • 47 Jalal FY, Yang Y, Thompson JF. et al. Hypoxia-induced neuroinflammatory white-matter injury reduced by minocycline in SHR/SP. J Cereb Blood Flow Metab 2015; 35: 1145-1153
  • 48 Brown RB, Tozer DJ, Loubière L. et al. MINocyclinE to Reduce inflammation and blood brain barrier leakage in small Vessel diseAse (MINERVA) trial study protocol. Eur Stroke J 2022; 7: 323-330
  • 49 Herrington WG, Staplin N, Wanner C. et al. Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 2023; 388: 117-127
  • 50 Pawlos A, Broncel M, Woźniak E. et al. Neuroprotective Effect of SGLT2 Inhibitors. Molecules 2021; 26
  • 51 Mejia-Renteria H, Travieso A, Matías-Guiu JA. et al. Coronary microvascular dysfunction is associated with impaired cognitive function: the Cerebral-Coronary Connection study (C3 study). Eur Heart J 2023; 44: 113-125
  • 52 Cheng J, Korte N, Nortley R. et al. Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol 2018; 136: 507-523
  • 53 Cai W, Chen X, Men X. et al. Gut microbiota from patients with arteriosclerotic CSVD induces higher IL-17A production in neutrophils via activating RORγt. Sci Adv 2021; 7